Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether the lines represented by the equations [tex]\( 6x - 2y = -2 \)[/tex] and [tex]\( y = 3x + 12 \)[/tex] are perpendicular, parallel, or neither, follow these steps:
1. Convert the first equation to slope-intercept form [tex]\( y = mx + b \)[/tex].
- Start with the equation: [tex]\( 6x - 2y = -2 \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ -2y = -6x - 2 \][/tex]
Divide every term by -2:
[tex]\[ y = 3x + 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of the first line is 3.
2. The slope of the second line [tex]\( y = 3x + 12 \)[/tex] is already given as the coefficient of [tex]\( x \)[/tex].
- Thus, the slope ([tex]\( m \)[/tex]) of the second line is also 3.
3. Compare the slopes to determine the relationship between the lines:
- If the slopes are equal, the lines are parallel.
- If the product of the slopes is -1, the lines are perpendicular.
- If neither condition is satisfied, the lines are neither parallel nor perpendicular.
In this case, both lines have a slope of 3. Since the slopes are the same, the lines are parallel.
Therefore:
The comparison of their slopes is equal, so the lines are parallel.
1. Convert the first equation to slope-intercept form [tex]\( y = mx + b \)[/tex].
- Start with the equation: [tex]\( 6x - 2y = -2 \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ -2y = -6x - 2 \][/tex]
Divide every term by -2:
[tex]\[ y = 3x + 1 \][/tex]
- The slope ([tex]\( m \)[/tex]) of the first line is 3.
2. The slope of the second line [tex]\( y = 3x + 12 \)[/tex] is already given as the coefficient of [tex]\( x \)[/tex].
- Thus, the slope ([tex]\( m \)[/tex]) of the second line is also 3.
3. Compare the slopes to determine the relationship between the lines:
- If the slopes are equal, the lines are parallel.
- If the product of the slopes is -1, the lines are perpendicular.
- If neither condition is satisfied, the lines are neither parallel nor perpendicular.
In this case, both lines have a slope of 3. Since the slopes are the same, the lines are parallel.
Therefore:
The comparison of their slopes is equal, so the lines are parallel.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.