Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A cylinder-piston system contains an ideal gas at a pressure of [tex][tex]$1.5 \times 10^5 \, \text{Pa}$[/tex][/tex]. The piston is pushed out, allowing the gas to expand from an initial volume of [tex][tex]$0.0002 \, \text{m}^3$[/tex][/tex] to a final volume of [tex][tex]$0.0006 \, \text{m}^3$[/tex][/tex]. The system absorbs [tex][tex]$32 \, \text{J}$[/tex][/tex] of heat during this process. What is the change in internal energy? (Use [tex]\Delta U = Q - W = Q - P \Delta V[/tex])

A. [tex][tex]$-28 \, \text{J}$[/tex][/tex]
B. [tex][tex]$-92 \, \text{J}$[/tex][/tex]
C. [tex][tex]$92 \, \text{J}$[/tex][/tex]
D. [tex][tex]$28 \, \text{J}$[/tex][/tex]


Sagot :

To solve this problem, we use the first law of thermodynamics, which states:

[tex]\[ \Delta U = Q - W \][/tex]

where [tex]\(\Delta U\)[/tex] is the change in internal energy, [tex]\(Q\)[/tex] is the heat absorbed by the system, and [tex]\(W\)[/tex] is the work done by the system.

Firstly, we need to calculate the change in volume ([tex]\(\Delta V\)[/tex]):

[tex]\[ \Delta V = V_{\text{final}} - V_{\text{initial}} \][/tex]
[tex]\[ \Delta V = 0.0006 \, m^3 - 0.0002 \, m^3 \][/tex]
[tex]\[ \Delta V = 0.0004 \, m^3 \][/tex]

Next, we calculate the work done by the gas during the expansion. For an ideal gas expanding at constant pressure, the work done ([tex]\(W\)[/tex]) is given by:

[tex]\[ W = P \Delta V \][/tex]

Substitute the given values for pressure ([tex]\(P = 1.5 \times 10^5 \, Pa\)[/tex]) and [tex]\(\Delta V\)[/tex]:

[tex]\[ W = 1.5 \times 10^5 \, Pa \times 0.0004 \, m^3 \][/tex]
[tex]\[ W = 60 \, J \][/tex]

Now, we apply the first law of thermodynamics. The system absorbs [tex]\(Q = 32 \, J\)[/tex] of heat. Therefore, the change in internal energy ([tex]\(\Delta U\)[/tex]) is:

[tex]\[ \Delta U = Q - W \][/tex]
[tex]\[ \Delta U = 32 \, J - 60 \, J \][/tex]
[tex]\[ \Delta U = -28 \, J \][/tex]

So, the change in internal energy is [tex]\(-28 \, J\)[/tex].

Thus, the correct answer is:
A. [tex]\( -28 \, J \)[/tex]