Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the validity of the given quantum numbers for the [tex]\( n = 3 \)[/tex] electron shell, we need to understand the rules governing quantum numbers.
1. Principal Quantum Number ([tex]\( n \)[/tex]):
- Defines the electron shell and is given as [tex]\( n = 3 \)[/tex].
2. Azimuthal Quantum Number ([tex]\( l \)[/tex]):
- Defines the subshell and can range from [tex]\( 0 \)[/tex] to [tex]\( n-1 \)[/tex].
- For [tex]\( n = 3 \)[/tex], [tex]\( l \)[/tex] can be [tex]\( 0, 1, \)[/tex] or [tex]\( 2 \)[/tex].
3. Magnetic Quantum Number ([tex]\( m_l \)[/tex]):
- Defines the orientation of the orbital and can range from [tex]\( -l \)[/tex] to [tex]\( +l \)[/tex].
- For each [tex]\( l \)[/tex]:
- If [tex]\( l = 0 \)[/tex], [tex]\( m_l = 0 \)[/tex].
- If [tex]\( l = 1 \)[/tex], [tex]\( m_l = -1, 0, 1 \)[/tex].
- If [tex]\( l = 2 \)[/tex], [tex]\( m_l = -2, -1, 0, 1, 2 \)[/tex].
Let's analyze each quantum number given:
1. [tex]\( I = 3 \)[/tex]:
- The azimuthal quantum number [tex]\( l = 3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be between [tex]\( 0 \)[/tex] and [tex]\( n-1 = 2 \)[/tex].
2. [tex]\( m = 3 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = 3 \)[/tex] would be valid only if [tex]\( l \geq 3 \)[/tex]. However, since [tex]\( l \)[/tex] for [tex]\( n = 3 \)[/tex] can only be [tex]\( 0, 1, \)[/tex] or [tex]\( 2 \)[/tex], [tex]\( m_l = 3 \)[/tex] is invalid.
3. [tex]\( I = 0 \)[/tex]:
- The azimuthal quantum number [tex]\( l = 0 \)[/tex] is valid because it is within the range [tex]\( 0 \)[/tex] to [tex]\( n-1 \)[/tex].
4. [tex]\( m = -2 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = -2 \)[/tex] is valid for [tex]\( l \geq 2 \)[/tex]. Since [tex]\( n = 3 \)[/tex] allows [tex]\( l = 2 \)[/tex], [tex]\( m_l = -2 \)[/tex] is valid.
5. [tex]\( I = -1 \)[/tex]:
- The azimuthal quantum number [tex]\( l = -1 \)[/tex] is invalid because [tex]\( l \)[/tex] cannot be negative.
6. [tex]\( m = 2 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = 2 \)[/tex] is valid for [tex]\( l \geq 2 \)[/tex]. Since [tex]\( n = 3 \)[/tex] allows [tex]\( l = 2 \)[/tex], [tex]\( m_l = 2 \)[/tex] is valid.
Based on this analysis, the validity of the quantum numbers is:
- [tex]\( I = 3 \)[/tex]: False
- [tex]\( m = 3 \)[/tex]: False
- [tex]\( I = 0 \)[/tex]: True
- [tex]\( m = -2 \)[/tex]: True
- [tex]\( I = -1 \)[/tex]: False
- [tex]\( m = 2 \)[/tex]: True
So, the result for the given [tex]\( n = 3 \)[/tex] electron shell is:
[tex]\( (False, False, True, True, False, True) \)[/tex]
1. Principal Quantum Number ([tex]\( n \)[/tex]):
- Defines the electron shell and is given as [tex]\( n = 3 \)[/tex].
2. Azimuthal Quantum Number ([tex]\( l \)[/tex]):
- Defines the subshell and can range from [tex]\( 0 \)[/tex] to [tex]\( n-1 \)[/tex].
- For [tex]\( n = 3 \)[/tex], [tex]\( l \)[/tex] can be [tex]\( 0, 1, \)[/tex] or [tex]\( 2 \)[/tex].
3. Magnetic Quantum Number ([tex]\( m_l \)[/tex]):
- Defines the orientation of the orbital and can range from [tex]\( -l \)[/tex] to [tex]\( +l \)[/tex].
- For each [tex]\( l \)[/tex]:
- If [tex]\( l = 0 \)[/tex], [tex]\( m_l = 0 \)[/tex].
- If [tex]\( l = 1 \)[/tex], [tex]\( m_l = -1, 0, 1 \)[/tex].
- If [tex]\( l = 2 \)[/tex], [tex]\( m_l = -2, -1, 0, 1, 2 \)[/tex].
Let's analyze each quantum number given:
1. [tex]\( I = 3 \)[/tex]:
- The azimuthal quantum number [tex]\( l = 3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be between [tex]\( 0 \)[/tex] and [tex]\( n-1 = 2 \)[/tex].
2. [tex]\( m = 3 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = 3 \)[/tex] would be valid only if [tex]\( l \geq 3 \)[/tex]. However, since [tex]\( l \)[/tex] for [tex]\( n = 3 \)[/tex] can only be [tex]\( 0, 1, \)[/tex] or [tex]\( 2 \)[/tex], [tex]\( m_l = 3 \)[/tex] is invalid.
3. [tex]\( I = 0 \)[/tex]:
- The azimuthal quantum number [tex]\( l = 0 \)[/tex] is valid because it is within the range [tex]\( 0 \)[/tex] to [tex]\( n-1 \)[/tex].
4. [tex]\( m = -2 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = -2 \)[/tex] is valid for [tex]\( l \geq 2 \)[/tex]. Since [tex]\( n = 3 \)[/tex] allows [tex]\( l = 2 \)[/tex], [tex]\( m_l = -2 \)[/tex] is valid.
5. [tex]\( I = -1 \)[/tex]:
- The azimuthal quantum number [tex]\( l = -1 \)[/tex] is invalid because [tex]\( l \)[/tex] cannot be negative.
6. [tex]\( m = 2 \)[/tex]:
- The magnetic quantum number [tex]\( m_l = 2 \)[/tex] is valid for [tex]\( l \geq 2 \)[/tex]. Since [tex]\( n = 3 \)[/tex] allows [tex]\( l = 2 \)[/tex], [tex]\( m_l = 2 \)[/tex] is valid.
Based on this analysis, the validity of the quantum numbers is:
- [tex]\( I = 3 \)[/tex]: False
- [tex]\( m = 3 \)[/tex]: False
- [tex]\( I = 0 \)[/tex]: True
- [tex]\( m = -2 \)[/tex]: True
- [tex]\( I = -1 \)[/tex]: False
- [tex]\( m = 2 \)[/tex]: True
So, the result for the given [tex]\( n = 3 \)[/tex] electron shell is:
[tex]\( (False, False, True, True, False, True) \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.