At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the strength of the electric field of a point charge, we use the formula:
[tex]\[ E = \frac{k \cdot q}{r^2} \][/tex]
where:
- [tex]\( E \)[/tex] is the electric field strength,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the magnitude of the point charge,
- [tex]\( r \)[/tex] is the distance from the charge.
Given values:
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- [tex]\( q = 6.4 \times 10^{-19} \, \text{C} \)[/tex],
- [tex]\( r = 4.0 \times 10^{-3} \, \text{m} \)[/tex].
First, we calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (4.0 \times 10^{-3} \, \text{m})^2 \][/tex]
[tex]\[ r^2 = 16.0 \times 10^{-6} \, \text{m}^2 \][/tex]
Next, we calculate the electric field strength [tex]\( E \)[/tex] by substituting the given values into the formula:
[tex]\[ E = \frac{9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
We calculate the numerator:
[tex]\[ 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C} = 57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ E = \frac{57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the division:
[tex]\[ E = \frac{57.6 \times 10^{-10}}{16.0 \times 10^{-6}} \][/tex]
[tex]\[ E = 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thus, the electric field strength is:
[tex]\[ 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
So, the correct answer is:
[tex]\[ \text{D. } 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
[tex]\[ E = \frac{k \cdot q}{r^2} \][/tex]
where:
- [tex]\( E \)[/tex] is the electric field strength,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the magnitude of the point charge,
- [tex]\( r \)[/tex] is the distance from the charge.
Given values:
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- [tex]\( q = 6.4 \times 10^{-19} \, \text{C} \)[/tex],
- [tex]\( r = 4.0 \times 10^{-3} \, \text{m} \)[/tex].
First, we calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (4.0 \times 10^{-3} \, \text{m})^2 \][/tex]
[tex]\[ r^2 = 16.0 \times 10^{-6} \, \text{m}^2 \][/tex]
Next, we calculate the electric field strength [tex]\( E \)[/tex] by substituting the given values into the formula:
[tex]\[ E = \frac{9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
We calculate the numerator:
[tex]\[ 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C} = 57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ E = \frac{57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the division:
[tex]\[ E = \frac{57.6 \times 10^{-10}}{16.0 \times 10^{-6}} \][/tex]
[tex]\[ E = 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thus, the electric field strength is:
[tex]\[ 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
So, the correct answer is:
[tex]\[ \text{D. } 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.