Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

What is the strength of the electric field of a point charge of magnitude [tex]+6.4 \times 10^{-19} C[/tex] at a distance of [tex]4.0 \times 10^{-3} m[/tex]?

[tex]\[ E = \frac{k q}{r^2}, \, k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \][/tex]

A. [tex]2.7 \times 10^{-4} \, \text{N} / \text{C}[/tex]

B. [tex]-2.7 \times 10^{-4} \, \text{N} / \text{C}[/tex]

C. [tex]-3.6 \times 10^{-4} \, \text{N} / \text{C}[/tex]

D. [tex]3.6 \times 10^{-4} \, \text{N} / \text{C}[/tex]

Sagot :

To find the strength of the electric field of a point charge, we use the formula:

[tex]\[ E = \frac{k \cdot q}{r^2} \][/tex]

where:
- [tex]\( E \)[/tex] is the electric field strength,
- [tex]\( k \)[/tex] is Coulomb's constant,
- [tex]\( q \)[/tex] is the magnitude of the point charge,
- [tex]\( r \)[/tex] is the distance from the charge.

Given values:
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex],
- [tex]\( q = 6.4 \times 10^{-19} \, \text{C} \)[/tex],
- [tex]\( r = 4.0 \times 10^{-3} \, \text{m} \)[/tex].

First, we calculate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = (4.0 \times 10^{-3} \, \text{m})^2 \][/tex]
[tex]\[ r^2 = 16.0 \times 10^{-6} \, \text{m}^2 \][/tex]

Next, we calculate the electric field strength [tex]\( E \)[/tex] by substituting the given values into the formula:
[tex]\[ E = \frac{9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]

We calculate the numerator:
[tex]\[ 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \times 6.4 \times 10^{-19} \, \text{C} = 57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C} \][/tex]

Now, we divide the numerator by the denominator:
[tex]\[ E = \frac{57.6 \times 10^{-10} \, \text{N} \cdot \text{m}^2 / \text{C}}{16.0 \times 10^{-6} \, \text{m}^2} \][/tex]

Simplifying the division:
[tex]\[ E = \frac{57.6 \times 10^{-10}}{16.0 \times 10^{-6}} \][/tex]
[tex]\[ E = 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]

Thus, the electric field strength is:
[tex]\[ 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]

So, the correct answer is:
[tex]\[ \text{D. } 3.6 \times 10^{-4} \, \text{N} / \text{C} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.