Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the electric force between two point charges, we can use Coulomb's law, which states:
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.