Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the electric force between two point charges, we can use Coulomb's law, which states:
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.