At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the electric force between two point charges, we can use Coulomb's law, which states:
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
[tex]\[ F_E = \frac{k \cdot |q_1| \cdot |q_2|}{r^2} \][/tex]
Given:
- [tex]\( q_1 = -4e \)[/tex]
- [tex]\( q_2 = +3e \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
- [tex]\( e = 1.6 \times 10^{-19} \)[/tex] C (elementary charge)
- [tex]\( k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex] (Coulomb's constant)
First, let's find the values for [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ q_1 = -4e = -4 \times (1.6 \times 10^{-19} \, \text{C}) = -6.4 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ q_2 = 3e = 3 \times (1.6 \times 10^{-19} \, \text{C}) = 4.8 \times 10^{-19} \, \text{C} \][/tex]
Next, we substitute these values into Coulomb's law:
[tex]\[ F_E = \frac{(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2) \times (-6.4 \times 10^{-19} \, \text{C}) \times (4.8 \times 10^{-19} \, \text{C})}{(0.05 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (0.05 \, \text{m})^2 = 0.0025 \, \text{m}^2 \][/tex]
Then, the numerator:
[tex]\[ (9.00 \times 10^9) \times (-6.4 \times 10^{-19}) \times (4.8 \times 10^{-19}) = -27.648 \times 10^{-9 + (-19) + (-19)} = -27.648 \times 10^{-47} \][/tex]
Divide the numerator by the denominator:
[tex]\[ F_E = \frac{-27.648 \times 10^{-47}}{0.0025 \, \text{m}^2} = -27.648 \times 10^{-47} \times \frac{1}{0.0025} = -27.648 \times 10^{-47} \times 4 \times 10^2 = -110.592 \times 10^{-45} = -1.10592 \times 10^{-44} \][/tex]
Therefore, the electric force between the two point charges is:
[tex]\[ \boxed{-1.10592 \times 10^{-24} \, \text{N}} \][/tex]
It matches with option A. [tex]\( -1.1 \times 10^{-24} \, \text{N} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.