Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which car has the most kinetic energy, we will use the kinetic energy formula:
[tex]\[ \text{Kinetic Energy} (KE) = \frac{1}{2} \times \text{mass} \times \text{velocity}^2 \][/tex]
We are given the following data for each car:
1. Car A:
- Mass: 1000 kg
- Speed: 3 m/s
2. Car B:
- Mass: 1000 kg
- Speed: 7 m/s
3. Car C:
- Mass: 2000 kg
- Speed: 3 m/s
4. Car D:
- Mass: 2000 kg
- Speed: 7 m/s
Let's calculate the kinetic energy for each car:
1. Kinetic energy of Car A:
[tex]\[ KE_1 = \frac{1}{2} \times 1000 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 1000 \times 9 = 4500 \, \text{J} \][/tex]
2. Kinetic energy of Car B:
[tex]\[ KE_2 = \frac{1}{2} \times 1000 \, \text{kg} \times (7 \, \text{m/s})^2 = 0.5 \times 1000 \times 49 = 24500 \, \text{J} \][/tex]
3. Kinetic energy of Car C:
[tex]\[ KE_3 = \frac{1}{2} \times 2000 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 2000 \times 9 = 9000 \, \text{J} \][/tex]
4. Kinetic energy of Car D:
[tex]\[ KE_4 = \frac{1}{2} \times 2000 \, \text{kg} \times (7 \, \text{m/s})^2 = 0.5 \times 2000 \times 49 = 49000 \, \text{J} \][/tex]
Now, we compare the kinetic energies:
- Car A: 4500 J
- Car B: 24500 J
- Car C: 9000 J
- Car D: 49000 J
Among these, the car with the most kinetic energy is Car D with 49000 J.
Therefore, the car with the most kinetic energy is:
- D. A car of mass 2000 kg with speed 7 m/s
[tex]\[ \text{Kinetic Energy} (KE) = \frac{1}{2} \times \text{mass} \times \text{velocity}^2 \][/tex]
We are given the following data for each car:
1. Car A:
- Mass: 1000 kg
- Speed: 3 m/s
2. Car B:
- Mass: 1000 kg
- Speed: 7 m/s
3. Car C:
- Mass: 2000 kg
- Speed: 3 m/s
4. Car D:
- Mass: 2000 kg
- Speed: 7 m/s
Let's calculate the kinetic energy for each car:
1. Kinetic energy of Car A:
[tex]\[ KE_1 = \frac{1}{2} \times 1000 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 1000 \times 9 = 4500 \, \text{J} \][/tex]
2. Kinetic energy of Car B:
[tex]\[ KE_2 = \frac{1}{2} \times 1000 \, \text{kg} \times (7 \, \text{m/s})^2 = 0.5 \times 1000 \times 49 = 24500 \, \text{J} \][/tex]
3. Kinetic energy of Car C:
[tex]\[ KE_3 = \frac{1}{2} \times 2000 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 2000 \times 9 = 9000 \, \text{J} \][/tex]
4. Kinetic energy of Car D:
[tex]\[ KE_4 = \frac{1}{2} \times 2000 \, \text{kg} \times (7 \, \text{m/s})^2 = 0.5 \times 2000 \times 49 = 49000 \, \text{J} \][/tex]
Now, we compare the kinetic energies:
- Car A: 4500 J
- Car B: 24500 J
- Car C: 9000 J
- Car D: 49000 J
Among these, the car with the most kinetic energy is Car D with 49000 J.
Therefore, the car with the most kinetic energy is:
- D. A car of mass 2000 kg with speed 7 m/s
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.