Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Which choice is equivalent to the product below for acceptable values of [tex][tex]$x$[/tex][/tex]?

[tex]\sqrt{7 x} \cdot \sqrt{x+2}[/tex]

A. [tex]\sqrt{7 x^2 + 14 x}[/tex]
B. [tex]\sqrt{7 x^2 + 14}[/tex]
C. [tex]\sqrt{7 x^2 + x}[/tex]
D. [tex]\sqrt{7 x^2 + 7 x}[/tex]


Sagot :

To determine the equivalent expression for the product [tex]\(\sqrt{7x} \cdot \sqrt{x+2}\)[/tex], we can make use of the property of square roots that states [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)[/tex].

1. Start with the given product:
[tex]\[ \sqrt{7x} \cdot \sqrt{x+2} \][/tex]

2. Apply the property of square roots to combine the two square roots into one:
[tex]\[ \sqrt{7x} \cdot \sqrt{x+2} = \sqrt{(7x) \cdot (x+2)} \][/tex]

3. Distribute [tex]\(7x\)[/tex] inside the square root:
[tex]\[ \sqrt{7x \cdot (x+2)} = \sqrt{7x \cdot x + 7x \cdot 2} = \sqrt{7x^2 + 14x} \][/tex]

Thus, the expression [tex]\(\sqrt{7x} \cdot \sqrt{x+2}\)[/tex] is equivalent to [tex]\(\sqrt{7x^2 + 14x}\)[/tex].

Among the given choices, the correct answer is:

A. [tex]\(\sqrt{7 x^2 + 14 x}\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.