Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the equations of the asymptotes of the given hyperbola, we need to identify the general form of the hyperbola equation and utilize specific elements of it.
The given hyperbola equation is:
[tex]\[ \dfrac{(y-2)^2}{9} - (x+2)^2 = 1 \][/tex]
This equation is in the standard form of a vertical hyperbola given by:
[tex]\[ \dfrac{(y - k)^2}{a^2} - \dfrac{(x - h)^2}{b^2} = 1 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the hyperbola, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the lengths of the semi-major and semi-minor axes, respectively.
In our equation:
- [tex]\(h = -2\)[/tex] (notice the form [tex]\((x + 2)\)[/tex])
- [tex]\(k = 2\)[/tex] (notice the form [tex]\((y - 2)\)[/tex])
- [tex]\(a^2 = 9 \Rightarrow a = 3\)[/tex]
- Since [tex]\(b^2\)[/tex] is not explicitly stated, but we know that the coefficient for [tex]\(x\)[/tex] term needs to be [tex]\(1\)[/tex].
The equations of the asymptotes for the hyperbola are:
[tex]\[ y - k = \pm \dfrac{a}{b} (x - h) \][/tex]
Plugging in the values we obtained:
[tex]\[ y - 2 = \pm \dfrac{3}{1} (x + 2) \][/tex]
This simplifies to:
[tex]\[ y - 2 = \pm 3 (x + 2) \][/tex]
Thus, we have two asymptote equations:
1. [tex]\[ y - 2 = 3(x + 2) \][/tex]
2. [tex]\[ y - 2 = -3(x + 2) \][/tex]
So, the correct answers for the drop-down menus would be:
- [tex]\[ y - 2 = 3(x + 2) \][/tex]
- [tex]\[ y - 2 = -3(x + 2) \][/tex]
The given hyperbola equation is:
[tex]\[ \dfrac{(y-2)^2}{9} - (x+2)^2 = 1 \][/tex]
This equation is in the standard form of a vertical hyperbola given by:
[tex]\[ \dfrac{(y - k)^2}{a^2} - \dfrac{(x - h)^2}{b^2} = 1 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the hyperbola, [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the lengths of the semi-major and semi-minor axes, respectively.
In our equation:
- [tex]\(h = -2\)[/tex] (notice the form [tex]\((x + 2)\)[/tex])
- [tex]\(k = 2\)[/tex] (notice the form [tex]\((y - 2)\)[/tex])
- [tex]\(a^2 = 9 \Rightarrow a = 3\)[/tex]
- Since [tex]\(b^2\)[/tex] is not explicitly stated, but we know that the coefficient for [tex]\(x\)[/tex] term needs to be [tex]\(1\)[/tex].
The equations of the asymptotes for the hyperbola are:
[tex]\[ y - k = \pm \dfrac{a}{b} (x - h) \][/tex]
Plugging in the values we obtained:
[tex]\[ y - 2 = \pm \dfrac{3}{1} (x + 2) \][/tex]
This simplifies to:
[tex]\[ y - 2 = \pm 3 (x + 2) \][/tex]
Thus, we have two asymptote equations:
1. [tex]\[ y - 2 = 3(x + 2) \][/tex]
2. [tex]\[ y - 2 = -3(x + 2) \][/tex]
So, the correct answers for the drop-down menus would be:
- [tex]\[ y - 2 = 3(x + 2) \][/tex]
- [tex]\[ y - 2 = -3(x + 2) \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.