Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Select the correct answer.

Which equation represents the hyperbola [tex]\frac{(y-2)^2}{4}-\frac{(x-2)^2}{9}=1[/tex] in general form?

A. [tex](y-2)^2-(x-2)^2-36=0[/tex]

B. [tex]y^2-x^2-4y+4x-36=0[/tex]

C. [tex]9y^2-4x^2-36y-16x-16=0[/tex]

D. [tex]9y^2-4x^2-36y+16x-16=0[/tex]


Sagot :

To determine the correct equation of the hyperbola [tex]\(\frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} = 1\)[/tex] in its general form, we need to manipulate and simplify this given equation. Let's go through this step-by-step:

1. Starting with the given equation:
[tex]\[ \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} = 1 \][/tex]

2. Clear the fractions by multiplying every term by the least common multiple of the denominators, which is 36:
[tex]\[ 36 \left( \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} \right) = 36 \cdot 1 \][/tex]
[tex]\[ 9(y-2)^2 - 4(x-2)^2 = 36 \][/tex]

3. Expand the terms:
[tex]\[ 9(y^2 - 4y + 4) - 4(x^2 - 4x + 4) = 36 \][/tex]

4. Distribute the constants 9 and -4 inside the parentheses:
[tex]\[ 9y^2 - 36y + 36 - 4x^2 + 16x - 16 = 36 \][/tex]

5. Move all the terms to one side of the equation to set it equal to zero:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x + 36 - 16 - 36 = 0 \][/tex]

6. Combine the constant terms:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]

So, the general form of the given hyperbola is:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{9y^2 - 4x^2 - 36y + 16x - 16 = 0} \][/tex]

This matches option D. Therefore, the correct answer is:
D. [tex]\(9 y^2-4 x^2-36 y+16 x-16=0\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.