Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct equation of the hyperbola [tex]\(\frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} = 1\)[/tex] in its general form, we need to manipulate and simplify this given equation. Let's go through this step-by-step:
1. Starting with the given equation:
[tex]\[ \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} = 1 \][/tex]
2. Clear the fractions by multiplying every term by the least common multiple of the denominators, which is 36:
[tex]\[ 36 \left( \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} \right) = 36 \cdot 1 \][/tex]
[tex]\[ 9(y-2)^2 - 4(x-2)^2 = 36 \][/tex]
3. Expand the terms:
[tex]\[ 9(y^2 - 4y + 4) - 4(x^2 - 4x + 4) = 36 \][/tex]
4. Distribute the constants 9 and -4 inside the parentheses:
[tex]\[ 9y^2 - 36y + 36 - 4x^2 + 16x - 16 = 36 \][/tex]
5. Move all the terms to one side of the equation to set it equal to zero:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x + 36 - 16 - 36 = 0 \][/tex]
6. Combine the constant terms:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]
So, the general form of the given hyperbola is:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{9y^2 - 4x^2 - 36y + 16x - 16 = 0} \][/tex]
This matches option D. Therefore, the correct answer is:
D. [tex]\(9 y^2-4 x^2-36 y+16 x-16=0\)[/tex]
1. Starting with the given equation:
[tex]\[ \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} = 1 \][/tex]
2. Clear the fractions by multiplying every term by the least common multiple of the denominators, which is 36:
[tex]\[ 36 \left( \frac{(y-2)^2}{4} - \frac{(x-2)^2}{9} \right) = 36 \cdot 1 \][/tex]
[tex]\[ 9(y-2)^2 - 4(x-2)^2 = 36 \][/tex]
3. Expand the terms:
[tex]\[ 9(y^2 - 4y + 4) - 4(x^2 - 4x + 4) = 36 \][/tex]
4. Distribute the constants 9 and -4 inside the parentheses:
[tex]\[ 9y^2 - 36y + 36 - 4x^2 + 16x - 16 = 36 \][/tex]
5. Move all the terms to one side of the equation to set it equal to zero:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x + 36 - 16 - 36 = 0 \][/tex]
6. Combine the constant terms:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]
So, the general form of the given hyperbola is:
[tex]\[ 9y^2 - 4x^2 - 36y + 16x - 16 = 0 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{9y^2 - 4x^2 - 36y + 16x - 16 = 0} \][/tex]
This matches option D. Therefore, the correct answer is:
D. [tex]\(9 y^2-4 x^2-36 y+16 x-16=0\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.