At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the area of the rectangle formed by the asymptotes of the hyperbola given by the equation [tex]\( 5x^2 - y^2 = 25 \)[/tex], we need to convert the equation into its standard form.
### Step-by-step solution:
1. Rewrite the Hyperbola in Standard Form:
The given equation of the hyperbola is:
[tex]\[ 5x^2 - y^2 = 25 \][/tex]
To convert this to the standard form of a hyperbola, we divide the entire equation by 25:
[tex]\[ \frac{5x^2}{25} - \frac{y^2}{25} = \frac{25}{25} \][/tex]
Simplify the equation:
[tex]\[ \frac{x^2}{5} - \frac{y^2}{25} = 1 \][/tex]
Now we have the standard form:
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{with} \quad a^2 = 5 \quad \text{and} \quad b^2 = 25 \][/tex]
2. Find [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a^2 = 5\)[/tex] implies [tex]\(a = \sqrt{5}\)[/tex]
- [tex]\(b^2 = 25\)[/tex] implies [tex]\(b = 5\)[/tex]
3. Understand the Asymptotes:
The asymptotes of the hyperbola are given by the equations:
[tex]\[ y = \pm \frac{b}{a} x \][/tex]
Therefore, the rectangle formed by the asymptotes extends to [tex]\(a\)[/tex] units along the [tex]\(x\)[/tex]-axis and [tex]\(b\)[/tex] units along the [tex]\(y\)[/tex]-axis.
4. Area of the Rectangle:
The length and breadth of the rectangle are [tex]\(2a\)[/tex] and [tex]\(2b\)[/tex] respectively because the asymptotes extend on both sides of the origin.
So, the area of the rectangle formed by the asymptotes is:
[tex]\[ 2a \times 2b \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ 2\sqrt{5} \times 2 \times 5 = 4\sqrt{5} \times 5 = 20\sqrt{5} \][/tex]
So, the area of the asymptote rectangle is [tex]\( 20 \sqrt{5} \)[/tex] square units.
Correct answer: A. [tex]\( 20 \sqrt{5} \)[/tex] square units
### Step-by-step solution:
1. Rewrite the Hyperbola in Standard Form:
The given equation of the hyperbola is:
[tex]\[ 5x^2 - y^2 = 25 \][/tex]
To convert this to the standard form of a hyperbola, we divide the entire equation by 25:
[tex]\[ \frac{5x^2}{25} - \frac{y^2}{25} = \frac{25}{25} \][/tex]
Simplify the equation:
[tex]\[ \frac{x^2}{5} - \frac{y^2}{25} = 1 \][/tex]
Now we have the standard form:
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{with} \quad a^2 = 5 \quad \text{and} \quad b^2 = 25 \][/tex]
2. Find [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a^2 = 5\)[/tex] implies [tex]\(a = \sqrt{5}\)[/tex]
- [tex]\(b^2 = 25\)[/tex] implies [tex]\(b = 5\)[/tex]
3. Understand the Asymptotes:
The asymptotes of the hyperbola are given by the equations:
[tex]\[ y = \pm \frac{b}{a} x \][/tex]
Therefore, the rectangle formed by the asymptotes extends to [tex]\(a\)[/tex] units along the [tex]\(x\)[/tex]-axis and [tex]\(b\)[/tex] units along the [tex]\(y\)[/tex]-axis.
4. Area of the Rectangle:
The length and breadth of the rectangle are [tex]\(2a\)[/tex] and [tex]\(2b\)[/tex] respectively because the asymptotes extend on both sides of the origin.
So, the area of the rectangle formed by the asymptotes is:
[tex]\[ 2a \times 2b \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ 2\sqrt{5} \times 2 \times 5 = 4\sqrt{5} \times 5 = 20\sqrt{5} \][/tex]
So, the area of the asymptote rectangle is [tex]\( 20 \sqrt{5} \)[/tex] square units.
Correct answer: A. [tex]\( 20 \sqrt{5} \)[/tex] square units
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.