Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the length of a wire that forms an arc of a circle with a radius of [tex]\(10.5\)[/tex] meters and a central angle of [tex]\(150^\circ\)[/tex], follow these steps:
1. Convert the angle from degrees to radians:
The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
Given:
[tex]\[ \text{angle in degrees} = 150^\circ \][/tex]
Use [tex]\(\pi = \frac{22}{7}\)[/tex]:
[tex]\[ \text{angle in radians} = 150 \times \left(\frac{22}{7 \times 180}\right) \][/tex]
2. Angle conversion:
Simplify the angle conversion:
[tex]\[ \text{angle in radians} = 150 \times \left(\frac{22}{1260}\right) = 150 \times \frac{11}{630} = 150 \times \frac{1}{60} = 2.5 \text{ radians} \][/tex]
3. Calculate the length of the arc:
The length [tex]\(S\)[/tex] of an arc is given by the formula:
[tex]\[ S = r \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the angle in radians. Given:
[tex]\[ r = 10.5 \, \text{meters} \][/tex]
and from the previous step,
[tex]\[ \theta = 2.619047619047619 \, \text{radians} \][/tex]
4. Compute the arc length:
Substitute the values into the formula:
[tex]\[ S = 10.5 \times 2.619047619047619 \][/tex]
5. Simplify the expression:
Compute:
[tex]\[ S = 27.5 \, \text{meters} \][/tex]
Hence, the length of the wire is [tex]\(27.5\)[/tex] meters.
1. Convert the angle from degrees to radians:
The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
Given:
[tex]\[ \text{angle in degrees} = 150^\circ \][/tex]
Use [tex]\(\pi = \frac{22}{7}\)[/tex]:
[tex]\[ \text{angle in radians} = 150 \times \left(\frac{22}{7 \times 180}\right) \][/tex]
2. Angle conversion:
Simplify the angle conversion:
[tex]\[ \text{angle in radians} = 150 \times \left(\frac{22}{1260}\right) = 150 \times \frac{11}{630} = 150 \times \frac{1}{60} = 2.5 \text{ radians} \][/tex]
3. Calculate the length of the arc:
The length [tex]\(S\)[/tex] of an arc is given by the formula:
[tex]\[ S = r \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the angle in radians. Given:
[tex]\[ r = 10.5 \, \text{meters} \][/tex]
and from the previous step,
[tex]\[ \theta = 2.619047619047619 \, \text{radians} \][/tex]
4. Compute the arc length:
Substitute the values into the formula:
[tex]\[ S = 10.5 \times 2.619047619047619 \][/tex]
5. Simplify the expression:
Compute:
[tex]\[ S = 27.5 \, \text{meters} \][/tex]
Hence, the length of the wire is [tex]\(27.5\)[/tex] meters.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.