Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve this question step by step.
1. Calculate the volume of the ball before the match:
- The formula for the volume [tex]\( V \)[/tex] of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex], where [tex]\( r \)[/tex] is the radius.
- Here, the radius before the match is 4.5 inches.
- Using [tex]\( \pi = \frac{22}{7} \)[/tex], substitute in the values:
[tex]\[ V_{\text{before}} = \frac{4}{3} \times \frac{22}{7} \times (4.5)^3 \][/tex]
- This evaluates to approximately [tex]\( 381.857 \)[/tex] cubic inches.
2. Calculate the volume of the ball after the match:
- The radius after the match is 4.4 inches.
- Again, using [tex]\( \pi = \frac{22}{7} \)[/tex], the volume is:
[tex]\[ V_{\text{after}} = \frac{4}{3} \times \frac{22}{7} \times (4.4)^3 \][/tex]
- This evaluates to approximately [tex]\( 356.962 \)[/tex] cubic inches.
3. Calculate the difference in volume:
- The difference in volume [tex]\( \Delta V \)[/tex] is the volume before minus the volume after:
[tex]\[ \Delta V = V_{\text{before}} - V_{\text{after}} \][/tex]
- Substituting in the values calculated:
[tex]\[ \Delta V = 381.857 - 356.962 \][/tex]
- This evaluates to approximately [tex]\( 24.896 \)[/tex] cubic inches.
So, the volume of the ball before the match is approximately [tex]\( \boxed{381.857} \)[/tex] cubic inches. The volume of the ball after the match is approximately [tex]\( \boxed{356.962} \)[/tex] cubic inches. The change in volume is approximately [tex]\( \boxed{24.896} \)[/tex] cubic inches.
1. Calculate the volume of the ball before the match:
- The formula for the volume [tex]\( V \)[/tex] of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex], where [tex]\( r \)[/tex] is the radius.
- Here, the radius before the match is 4.5 inches.
- Using [tex]\( \pi = \frac{22}{7} \)[/tex], substitute in the values:
[tex]\[ V_{\text{before}} = \frac{4}{3} \times \frac{22}{7} \times (4.5)^3 \][/tex]
- This evaluates to approximately [tex]\( 381.857 \)[/tex] cubic inches.
2. Calculate the volume of the ball after the match:
- The radius after the match is 4.4 inches.
- Again, using [tex]\( \pi = \frac{22}{7} \)[/tex], the volume is:
[tex]\[ V_{\text{after}} = \frac{4}{3} \times \frac{22}{7} \times (4.4)^3 \][/tex]
- This evaluates to approximately [tex]\( 356.962 \)[/tex] cubic inches.
3. Calculate the difference in volume:
- The difference in volume [tex]\( \Delta V \)[/tex] is the volume before minus the volume after:
[tex]\[ \Delta V = V_{\text{before}} - V_{\text{after}} \][/tex]
- Substituting in the values calculated:
[tex]\[ \Delta V = 381.857 - 356.962 \][/tex]
- This evaluates to approximately [tex]\( 24.896 \)[/tex] cubic inches.
So, the volume of the ball before the match is approximately [tex]\( \boxed{381.857} \)[/tex] cubic inches. The volume of the ball after the match is approximately [tex]\( \boxed{356.962} \)[/tex] cubic inches. The change in volume is approximately [tex]\( \boxed{24.896} \)[/tex] cubic inches.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.