Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve this question step by step.
1. Calculate the volume of the ball before the match:
- The formula for the volume [tex]\( V \)[/tex] of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex], where [tex]\( r \)[/tex] is the radius.
- Here, the radius before the match is 4.5 inches.
- Using [tex]\( \pi = \frac{22}{7} \)[/tex], substitute in the values:
[tex]\[ V_{\text{before}} = \frac{4}{3} \times \frac{22}{7} \times (4.5)^3 \][/tex]
- This evaluates to approximately [tex]\( 381.857 \)[/tex] cubic inches.
2. Calculate the volume of the ball after the match:
- The radius after the match is 4.4 inches.
- Again, using [tex]\( \pi = \frac{22}{7} \)[/tex], the volume is:
[tex]\[ V_{\text{after}} = \frac{4}{3} \times \frac{22}{7} \times (4.4)^3 \][/tex]
- This evaluates to approximately [tex]\( 356.962 \)[/tex] cubic inches.
3. Calculate the difference in volume:
- The difference in volume [tex]\( \Delta V \)[/tex] is the volume before minus the volume after:
[tex]\[ \Delta V = V_{\text{before}} - V_{\text{after}} \][/tex]
- Substituting in the values calculated:
[tex]\[ \Delta V = 381.857 - 356.962 \][/tex]
- This evaluates to approximately [tex]\( 24.896 \)[/tex] cubic inches.
So, the volume of the ball before the match is approximately [tex]\( \boxed{381.857} \)[/tex] cubic inches. The volume of the ball after the match is approximately [tex]\( \boxed{356.962} \)[/tex] cubic inches. The change in volume is approximately [tex]\( \boxed{24.896} \)[/tex] cubic inches.
1. Calculate the volume of the ball before the match:
- The formula for the volume [tex]\( V \)[/tex] of a sphere is given by [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex], where [tex]\( r \)[/tex] is the radius.
- Here, the radius before the match is 4.5 inches.
- Using [tex]\( \pi = \frac{22}{7} \)[/tex], substitute in the values:
[tex]\[ V_{\text{before}} = \frac{4}{3} \times \frac{22}{7} \times (4.5)^3 \][/tex]
- This evaluates to approximately [tex]\( 381.857 \)[/tex] cubic inches.
2. Calculate the volume of the ball after the match:
- The radius after the match is 4.4 inches.
- Again, using [tex]\( \pi = \frac{22}{7} \)[/tex], the volume is:
[tex]\[ V_{\text{after}} = \frac{4}{3} \times \frac{22}{7} \times (4.4)^3 \][/tex]
- This evaluates to approximately [tex]\( 356.962 \)[/tex] cubic inches.
3. Calculate the difference in volume:
- The difference in volume [tex]\( \Delta V \)[/tex] is the volume before minus the volume after:
[tex]\[ \Delta V = V_{\text{before}} - V_{\text{after}} \][/tex]
- Substituting in the values calculated:
[tex]\[ \Delta V = 381.857 - 356.962 \][/tex]
- This evaluates to approximately [tex]\( 24.896 \)[/tex] cubic inches.
So, the volume of the ball before the match is approximately [tex]\( \boxed{381.857} \)[/tex] cubic inches. The volume of the ball after the match is approximately [tex]\( \boxed{356.962} \)[/tex] cubic inches. The change in volume is approximately [tex]\( \boxed{24.896} \)[/tex] cubic inches.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.