Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

If [tex]\tan \theta = -\frac{4}{3}[/tex] in quadrant II, what is [tex]\cos \theta[/tex]?

A. [tex]\frac{4}{5}[/tex]
B. [tex]\frac{4}{5}[/tex]
C. [tex]\frac{3}{5}[/tex]
D. [tex]\frac{3}{5}[/tex]


Sagot :

To find [tex]\(\cos \theta\)[/tex] given that [tex]\(\tan \theta = -\frac{4}{3}\)[/tex] and knowing that [tex]\(\theta\)[/tex] is in Quadrant II, follow these steps:

1. Understand the Properties in Quadrant II:
- In Quadrant II, the cosine function ([tex]\(\cos \theta\)[/tex]) is negative, while the sine function ([tex]\(\sin \theta\)[/tex]) is positive.

2. Relate [tex]\(\tan \theta\)[/tex] to [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
- By definition, [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
- Given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex], we can write this as:
[tex]\[ \frac{\sin \theta}{\cos \theta} = -\frac{4}{3} \][/tex]

3. Use a Pythagorean Identity:
- The Pythagorean identity states that:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
- We can let [tex]\(\sin \theta = -4k\)[/tex] and [tex]\(\cos \theta = 3k\)[/tex] or [tex]\(\cos \theta = -3k\)[/tex] since [tex]\(\tan \theta = -\frac{4}{3}\)[/tex].

4. Determine [tex]\(k\)[/tex] using the Pythagorean theorem:
- Substitute [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] in the Pythagorean identity:
[tex]\[ \left( -4k \right)^2 + \left( 3k \right)^2 = 1 \][/tex]
[tex]\[ 16k^2 + 9k^2 = 1 \][/tex]
[tex]\[ 25k^2 = 1 \][/tex]
[tex]\[ k^2 = \frac{1}{25} \][/tex]
[tex]\[ k = \frac{1}{5} \][/tex]

5. Calculate [tex]\(\cos \theta\)[/tex]:
- Using [tex]\(k = \frac{1}{5}\)[/tex] and the fact that [tex]\(\cos \theta = 3k\)[/tex] and [tex]\(\cos \theta\)[/tex] is negative in Quadrant II, we get:
[tex]\[ \cos \theta = 3 \times \frac{1}{5} = \frac{3}{5} \][/tex]
[tex]\[ \cos \theta = -\frac{3}{5} \][/tex]

So, [tex]\(\cos \theta = -\frac{3}{5}\)[/tex]

However, none of the provided answer choices in the question include the correct result [tex]\((-0.6000000000000001\)[/tex] from the methodology).

Given that:
- Normally, the answer would be [tex]\(\cos \theta = -\frac{3}{5}\)[/tex].

Since the options A, B, C, and D do not match, there seems to be an issue with the provided answer choices, or there might be a typographical error issue in the options listed. Accordingly, none of the options A, B, C, or D seems to be correct based on our calculations for [tex]\(\cos \theta\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.