Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find [tex]\(\cos \theta\)[/tex] given that [tex]\(\tan \theta = -\frac{4}{3}\)[/tex] and knowing that [tex]\(\theta\)[/tex] is in Quadrant II, follow these steps:
1. Understand the Properties in Quadrant II:
- In Quadrant II, the cosine function ([tex]\(\cos \theta\)[/tex]) is negative, while the sine function ([tex]\(\sin \theta\)[/tex]) is positive.
2. Relate [tex]\(\tan \theta\)[/tex] to [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
- By definition, [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
- Given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex], we can write this as:
[tex]\[ \frac{\sin \theta}{\cos \theta} = -\frac{4}{3} \][/tex]
3. Use a Pythagorean Identity:
- The Pythagorean identity states that:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
- We can let [tex]\(\sin \theta = -4k\)[/tex] and [tex]\(\cos \theta = 3k\)[/tex] or [tex]\(\cos \theta = -3k\)[/tex] since [tex]\(\tan \theta = -\frac{4}{3}\)[/tex].
4. Determine [tex]\(k\)[/tex] using the Pythagorean theorem:
- Substitute [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] in the Pythagorean identity:
[tex]\[ \left( -4k \right)^2 + \left( 3k \right)^2 = 1 \][/tex]
[tex]\[ 16k^2 + 9k^2 = 1 \][/tex]
[tex]\[ 25k^2 = 1 \][/tex]
[tex]\[ k^2 = \frac{1}{25} \][/tex]
[tex]\[ k = \frac{1}{5} \][/tex]
5. Calculate [tex]\(\cos \theta\)[/tex]:
- Using [tex]\(k = \frac{1}{5}\)[/tex] and the fact that [tex]\(\cos \theta = 3k\)[/tex] and [tex]\(\cos \theta\)[/tex] is negative in Quadrant II, we get:
[tex]\[ \cos \theta = 3 \times \frac{1}{5} = \frac{3}{5} \][/tex]
[tex]\[ \cos \theta = -\frac{3}{5} \][/tex]
So, [tex]\(\cos \theta = -\frac{3}{5}\)[/tex]
However, none of the provided answer choices in the question include the correct result [tex]\((-0.6000000000000001\)[/tex] from the methodology).
Given that:
- Normally, the answer would be [tex]\(\cos \theta = -\frac{3}{5}\)[/tex].
Since the options A, B, C, and D do not match, there seems to be an issue with the provided answer choices, or there might be a typographical error issue in the options listed. Accordingly, none of the options A, B, C, or D seems to be correct based on our calculations for [tex]\(\cos \theta\)[/tex].
1. Understand the Properties in Quadrant II:
- In Quadrant II, the cosine function ([tex]\(\cos \theta\)[/tex]) is negative, while the sine function ([tex]\(\sin \theta\)[/tex]) is positive.
2. Relate [tex]\(\tan \theta\)[/tex] to [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
- By definition, [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
- Given [tex]\(\tan \theta = -\frac{4}{3}\)[/tex], we can write this as:
[tex]\[ \frac{\sin \theta}{\cos \theta} = -\frac{4}{3} \][/tex]
3. Use a Pythagorean Identity:
- The Pythagorean identity states that:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
- We can let [tex]\(\sin \theta = -4k\)[/tex] and [tex]\(\cos \theta = 3k\)[/tex] or [tex]\(\cos \theta = -3k\)[/tex] since [tex]\(\tan \theta = -\frac{4}{3}\)[/tex].
4. Determine [tex]\(k\)[/tex] using the Pythagorean theorem:
- Substitute [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] in the Pythagorean identity:
[tex]\[ \left( -4k \right)^2 + \left( 3k \right)^2 = 1 \][/tex]
[tex]\[ 16k^2 + 9k^2 = 1 \][/tex]
[tex]\[ 25k^2 = 1 \][/tex]
[tex]\[ k^2 = \frac{1}{25} \][/tex]
[tex]\[ k = \frac{1}{5} \][/tex]
5. Calculate [tex]\(\cos \theta\)[/tex]:
- Using [tex]\(k = \frac{1}{5}\)[/tex] and the fact that [tex]\(\cos \theta = 3k\)[/tex] and [tex]\(\cos \theta\)[/tex] is negative in Quadrant II, we get:
[tex]\[ \cos \theta = 3 \times \frac{1}{5} = \frac{3}{5} \][/tex]
[tex]\[ \cos \theta = -\frac{3}{5} \][/tex]
So, [tex]\(\cos \theta = -\frac{3}{5}\)[/tex]
However, none of the provided answer choices in the question include the correct result [tex]\((-0.6000000000000001\)[/tex] from the methodology).
Given that:
- Normally, the answer would be [tex]\(\cos \theta = -\frac{3}{5}\)[/tex].
Since the options A, B, C, and D do not match, there seems to be an issue with the provided answer choices, or there might be a typographical error issue in the options listed. Accordingly, none of the options A, B, C, or D seems to be correct based on our calculations for [tex]\(\cos \theta\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.