Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for [tex]\( x \)[/tex] in the compound inequality:
[tex]\[ 5x - 10 > 20 \text{ or } 5x - 10 \leq -15 \][/tex]
we will break it into two separate inequalities and solve for [tex]\( x \)[/tex] in each part.
### Solving the First Inequality:
[tex]\[ 5x - 10 > 20 \][/tex]
1. Add 10 to both sides:
[tex]\[ 5x - 10 + 10 > 20 + 10 \][/tex]
[tex]\[ 5x > 30 \][/tex]
2. Divide both sides by 5:
[tex]\[ \frac{5x}{5} > \frac{30}{5} \][/tex]
[tex]\[ x > 6 \][/tex]
Thus, the solution to the first inequality is:
[tex]\[ x > 6 \][/tex]
### Solving the Second Inequality:
[tex]\[ 5x - 10 \leq -15 \][/tex]
1. Add 10 to both sides:
[tex]\[ 5x - 10 + 10 \leq -15 + 10 \][/tex]
[tex]\[ 5x \leq -5 \][/tex]
2. Divide both sides by 5:
[tex]\[ \frac{5x}{5} \leq \frac{-5}{5} \][/tex]
[tex]\[ x \leq -1 \][/tex]
Thus, the solution to the second inequality is:
[tex]\[ x \leq -1 \][/tex]
### Combining the Results:
We are looking for the union of the solutions to the two inequalities because we have an "or" condition. Therefore, we combine both solution sets:
[tex]\[ x \leq -1 \text{ or } x > 6 \][/tex]
### Conclusion:
Comparing this result to the provided options, the correct solution is:
[tex]\[ x \leq -1 \text{ or } x > 6 \][/tex]
[tex]\[ 5x - 10 > 20 \text{ or } 5x - 10 \leq -15 \][/tex]
we will break it into two separate inequalities and solve for [tex]\( x \)[/tex] in each part.
### Solving the First Inequality:
[tex]\[ 5x - 10 > 20 \][/tex]
1. Add 10 to both sides:
[tex]\[ 5x - 10 + 10 > 20 + 10 \][/tex]
[tex]\[ 5x > 30 \][/tex]
2. Divide both sides by 5:
[tex]\[ \frac{5x}{5} > \frac{30}{5} \][/tex]
[tex]\[ x > 6 \][/tex]
Thus, the solution to the first inequality is:
[tex]\[ x > 6 \][/tex]
### Solving the Second Inequality:
[tex]\[ 5x - 10 \leq -15 \][/tex]
1. Add 10 to both sides:
[tex]\[ 5x - 10 + 10 \leq -15 + 10 \][/tex]
[tex]\[ 5x \leq -5 \][/tex]
2. Divide both sides by 5:
[tex]\[ \frac{5x}{5} \leq \frac{-5}{5} \][/tex]
[tex]\[ x \leq -1 \][/tex]
Thus, the solution to the second inequality is:
[tex]\[ x \leq -1 \][/tex]
### Combining the Results:
We are looking for the union of the solutions to the two inequalities because we have an "or" condition. Therefore, we combine both solution sets:
[tex]\[ x \leq -1 \text{ or } x > 6 \][/tex]
### Conclusion:
Comparing this result to the provided options, the correct solution is:
[tex]\[ x \leq -1 \text{ or } x > 6 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.