Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's walk through the steps to understand how to find the ratio of the volumes of two similar cones with given radii.
1. Understand the relationship between similar cones:
- The volumes of similar cones are proportional to the cubes of their corresponding radii. This is because the volume [tex]\( V \)[/tex] of a cone is given by the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
If two cones are similar, their heights are also proportional to their radii. Hence the ratio of their volumes is:
[tex]\[ \left( \frac{r_1}{r_2} \right)^3 \][/tex]
2. Given values:
- The radius of the larger cone [tex]\( r_1 \)[/tex] is 6.
- The radius of the smaller cone [tex]\( r_2 \)[/tex] is 1.
3. Calculate the volumes' ratio:
- Using the relationship mentioned above, the ratio of the volumes of the cones is:
[tex]\[ \left( \frac{r_1}{r_2} \right)^3 = \left( \frac{6}{1} \right)^3 = 6^3 = 216 \][/tex]
4. Conclusion:
- Therefore, the ratio of the volumes of the larger cone to the smaller cone is [tex]\( 216:1 \)[/tex].
So the correct answer is D. 216:1.
1. Understand the relationship between similar cones:
- The volumes of similar cones are proportional to the cubes of their corresponding radii. This is because the volume [tex]\( V \)[/tex] of a cone is given by the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
If two cones are similar, their heights are also proportional to their radii. Hence the ratio of their volumes is:
[tex]\[ \left( \frac{r_1}{r_2} \right)^3 \][/tex]
2. Given values:
- The radius of the larger cone [tex]\( r_1 \)[/tex] is 6.
- The radius of the smaller cone [tex]\( r_2 \)[/tex] is 1.
3. Calculate the volumes' ratio:
- Using the relationship mentioned above, the ratio of the volumes of the cones is:
[tex]\[ \left( \frac{r_1}{r_2} \right)^3 = \left( \frac{6}{1} \right)^3 = 6^3 = 216 \][/tex]
4. Conclusion:
- Therefore, the ratio of the volumes of the larger cone to the smaller cone is [tex]\( 216:1 \)[/tex].
So the correct answer is D. 216:1.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.