At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the given rational equation:
[tex]\[ \frac{4}{x+3}+\frac{3}{x-4}=\frac{21}{(x+3)(x-4)} \][/tex]
we need to determine the restrictions on the variable [tex]\( x \)[/tex].
### Step-by-Step Solution:
1. Identify the Denominators:
- The denominators are [tex]\( x + 3 \)[/tex] and [tex]\( x - 4 \)[/tex].
2. Find When Denominators Are Zero:
- The values of [tex]\( x \)[/tex] that make [tex]\( x + 3 \)[/tex] and [tex]\( x - 4 \)[/tex] equal to zero will cause the denominators to be undefined.
3. Set Each Denominator Equal to Zero and Solve:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
### Conclusion:
The variable [tex]\( x \)[/tex] cannot take the values that make the denominators zero. Hence, the restrictions on the variable [tex]\( x \)[/tex] are:
[tex]\[ x \neq -3 \quad \text{and} \quad x \neq 4 \][/tex]
Therefore, the values of [tex]\( x \)[/tex] that cause the denominators to be zero and must be excluded from the solution are [tex]\(-3\)[/tex] and [tex]\(4\)[/tex].
[tex]\[ \frac{4}{x+3}+\frac{3}{x-4}=\frac{21}{(x+3)(x-4)} \][/tex]
we need to determine the restrictions on the variable [tex]\( x \)[/tex].
### Step-by-Step Solution:
1. Identify the Denominators:
- The denominators are [tex]\( x + 3 \)[/tex] and [tex]\( x - 4 \)[/tex].
2. Find When Denominators Are Zero:
- The values of [tex]\( x \)[/tex] that make [tex]\( x + 3 \)[/tex] and [tex]\( x - 4 \)[/tex] equal to zero will cause the denominators to be undefined.
3. Set Each Denominator Equal to Zero and Solve:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
### Conclusion:
The variable [tex]\( x \)[/tex] cannot take the values that make the denominators zero. Hence, the restrictions on the variable [tex]\( x \)[/tex] are:
[tex]\[ x \neq -3 \quad \text{and} \quad x \neq 4 \][/tex]
Therefore, the values of [tex]\( x \)[/tex] that cause the denominators to be zero and must be excluded from the solution are [tex]\(-3\)[/tex] and [tex]\(4\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.