Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine [tex]\(6^{\frac{2}{3}}\)[/tex] in radical form, we need to convert the expression involving the fractional exponent into an expression involving a radical (root).
The fractional exponent [tex]\(\frac{2}{3}\)[/tex] can be interpreted as follows:
[tex]\[6^{\frac{2}{3}} = (6^2)^{\frac{1}{3}}\][/tex]
This is because:
[tex]\[a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}}\][/tex]
Here, we have [tex]\(a = 6\)[/tex], [tex]\(m = 2\)[/tex], and [tex]\(n = 3\)[/tex]:
[tex]\[6^{\frac{2}{3}} = (6^2)^{\frac{1}{3}}\][/tex]
Now, let's calculate [tex]\(6^2\)[/tex]:
[tex]\[6^2 = 36\][/tex]
Therefore, we can express [tex]\(6^{\frac{2}{3}}\)[/tex] as:
[tex]\[(6^2)^{\frac{1}{3}} = \sqrt[3]{6^2} = \sqrt[3]{36}\][/tex]
Among the given options:
- [tex]\(\sqrt[3]{6^2}\)[/tex] is the correct radical form.
- [tex]\(\sqrt[2]{6^3}\)[/tex] would be [tex]\(6^{\frac{3}{2}}\)[/tex].
- [tex]\(\sqrt[2]{6 \cdot 3}\)[/tex] would be [tex]\(\sqrt{18}\)[/tex].
So, the correct radical form for [tex]\(6^{\frac{2}{3}}\)[/tex] is:
[tex]\[\boxed{\sqrt[3]{6^2}}\][/tex]
When evaluated, this value is approximately:
[tex]\[6^{\frac{2}{3}} \approx 3.3019272488946263\][/tex]
So the correct radical form of [tex]\(6^{\frac{2}{3}}\)[/tex] is indeed [tex]\(\sqrt[3]{6^2}\)[/tex].
The fractional exponent [tex]\(\frac{2}{3}\)[/tex] can be interpreted as follows:
[tex]\[6^{\frac{2}{3}} = (6^2)^{\frac{1}{3}}\][/tex]
This is because:
[tex]\[a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}}\][/tex]
Here, we have [tex]\(a = 6\)[/tex], [tex]\(m = 2\)[/tex], and [tex]\(n = 3\)[/tex]:
[tex]\[6^{\frac{2}{3}} = (6^2)^{\frac{1}{3}}\][/tex]
Now, let's calculate [tex]\(6^2\)[/tex]:
[tex]\[6^2 = 36\][/tex]
Therefore, we can express [tex]\(6^{\frac{2}{3}}\)[/tex] as:
[tex]\[(6^2)^{\frac{1}{3}} = \sqrt[3]{6^2} = \sqrt[3]{36}\][/tex]
Among the given options:
- [tex]\(\sqrt[3]{6^2}\)[/tex] is the correct radical form.
- [tex]\(\sqrt[2]{6^3}\)[/tex] would be [tex]\(6^{\frac{3}{2}}\)[/tex].
- [tex]\(\sqrt[2]{6 \cdot 3}\)[/tex] would be [tex]\(\sqrt{18}\)[/tex].
So, the correct radical form for [tex]\(6^{\frac{2}{3}}\)[/tex] is:
[tex]\[\boxed{\sqrt[3]{6^2}}\][/tex]
When evaluated, this value is approximately:
[tex]\[6^{\frac{2}{3}} \approx 3.3019272488946263\][/tex]
So the correct radical form of [tex]\(6^{\frac{2}{3}}\)[/tex] is indeed [tex]\(\sqrt[3]{6^2}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.