Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the limit [tex]\(\lim _{x \rightarrow 0^{+}} x^{\sin x}\)[/tex], let's go through a detailed, step-by-step solution.
1. Understanding the Problem:
We are asked to find the limit as [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex] for the expression [tex]\( x^{\sin x} \)[/tex]. Since [tex]\( \sin x \)[/tex] oscillates but tends to 0 as [tex]\( x \)[/tex] approaches 0, we need to handle the expression carefully to find the limit.
2. Rewrite the Expression:
Rewrite [tex]\( x^{\sin x} \)[/tex] using the exponential and natural logarithm functions:
[tex]\[ x^{\sin x} = e^{\ln(x^{\sin x})} = e^{\sin x \cdot \ln x} \][/tex]
This step uses the property that [tex]\( a^b = e^{b \ln a} \)[/tex].
3. Analyze the Exponent:
We now focus on the exponent [tex]\( \sin x \cdot \ln x \)[/tex]:
[tex]\[ \lim_{x \to 0^+} \sin x \cdot \ln x \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex], [tex]\( \sin x \)[/tex] approaches 0. Meanwhile, [tex]\( \ln x \)[/tex] approaches [tex]\( -\infty \)[/tex].
4. Behavior of the Product:
Even though [tex]\( \ln x \)[/tex] diverges to [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches 0 from the positive side, the fact that [tex]\( \sin x \)[/tex] approaches 0 much faster suggests we might get an indeterminate form. To confirm, consider:
[tex]\[ \sin x \approx x \ \text{for} \ x \ \text{near 0}, \][/tex]
Thus, the product [tex]\( \sin x \cdot \ln x \)[/tex] can be approximated as [tex]\( x \cdot \ln x \)[/tex].
5. Limit of the Approximation:
We now evaluate:
[tex]\[ \lim_{x \to 0^+} x \ln x \][/tex]
Make a substitution to simplify:
Let [tex]\( t = \ln x \)[/tex]. As [tex]\( x \to 0^+ \)[/tex], [tex]\( t \to -\infty \)[/tex]. The substitution [tex]\( x = e^t \)[/tex] gives us:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t \][/tex]
6. Evaluate the Simplified Limit:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t = 0 \][/tex]
Since the exponential function [tex]\( e^t \)[/tex] decays to zero faster than [tex]\( t \)[/tex] grows negatively.
7. Return to Original Expression:
Therefore:
[tex]\[ \lim_{x \to 0^+} \sin x \ \ln x = 0 \][/tex]
8. Exponent Back to Exponential Form:
Using this result, we have:
[tex]\[ \lim_{x \to 0^+} x^{\sin x} = e^{\lim_{x \to 0^+} \sin x \cdot \ln x} = e^0 = 1 \][/tex]
Thus, the result of the limit is:
[tex]\[ \boxed{1} \][/tex]
1. Understanding the Problem:
We are asked to find the limit as [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex] for the expression [tex]\( x^{\sin x} \)[/tex]. Since [tex]\( \sin x \)[/tex] oscillates but tends to 0 as [tex]\( x \)[/tex] approaches 0, we need to handle the expression carefully to find the limit.
2. Rewrite the Expression:
Rewrite [tex]\( x^{\sin x} \)[/tex] using the exponential and natural logarithm functions:
[tex]\[ x^{\sin x} = e^{\ln(x^{\sin x})} = e^{\sin x \cdot \ln x} \][/tex]
This step uses the property that [tex]\( a^b = e^{b \ln a} \)[/tex].
3. Analyze the Exponent:
We now focus on the exponent [tex]\( \sin x \cdot \ln x \)[/tex]:
[tex]\[ \lim_{x \to 0^+} \sin x \cdot \ln x \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex], [tex]\( \sin x \)[/tex] approaches 0. Meanwhile, [tex]\( \ln x \)[/tex] approaches [tex]\( -\infty \)[/tex].
4. Behavior of the Product:
Even though [tex]\( \ln x \)[/tex] diverges to [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches 0 from the positive side, the fact that [tex]\( \sin x \)[/tex] approaches 0 much faster suggests we might get an indeterminate form. To confirm, consider:
[tex]\[ \sin x \approx x \ \text{for} \ x \ \text{near 0}, \][/tex]
Thus, the product [tex]\( \sin x \cdot \ln x \)[/tex] can be approximated as [tex]\( x \cdot \ln x \)[/tex].
5. Limit of the Approximation:
We now evaluate:
[tex]\[ \lim_{x \to 0^+} x \ln x \][/tex]
Make a substitution to simplify:
Let [tex]\( t = \ln x \)[/tex]. As [tex]\( x \to 0^+ \)[/tex], [tex]\( t \to -\infty \)[/tex]. The substitution [tex]\( x = e^t \)[/tex] gives us:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t \][/tex]
6. Evaluate the Simplified Limit:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t = 0 \][/tex]
Since the exponential function [tex]\( e^t \)[/tex] decays to zero faster than [tex]\( t \)[/tex] grows negatively.
7. Return to Original Expression:
Therefore:
[tex]\[ \lim_{x \to 0^+} \sin x \ \ln x = 0 \][/tex]
8. Exponent Back to Exponential Form:
Using this result, we have:
[tex]\[ \lim_{x \to 0^+} x^{\sin x} = e^{\lim_{x \to 0^+} \sin x \cdot \ln x} = e^0 = 1 \][/tex]
Thus, the result of the limit is:
[tex]\[ \boxed{1} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.