Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Evaluate the limit:
[tex]\[ \lim _{x \rightarrow 0^{+}} x^{\sin x} \][/tex]

Sagot :

To find the limit [tex]\(\lim _{x \rightarrow 0^{+}} x^{\sin x}\)[/tex], let's go through a detailed, step-by-step solution.

1. Understanding the Problem:
We are asked to find the limit as [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex] for the expression [tex]\( x^{\sin x} \)[/tex]. Since [tex]\( \sin x \)[/tex] oscillates but tends to 0 as [tex]\( x \)[/tex] approaches 0, we need to handle the expression carefully to find the limit.

2. Rewrite the Expression:
Rewrite [tex]\( x^{\sin x} \)[/tex] using the exponential and natural logarithm functions:
[tex]\[ x^{\sin x} = e^{\ln(x^{\sin x})} = e^{\sin x \cdot \ln x} \][/tex]
This step uses the property that [tex]\( a^b = e^{b \ln a} \)[/tex].

3. Analyze the Exponent:
We now focus on the exponent [tex]\( \sin x \cdot \ln x \)[/tex]:
[tex]\[ \lim_{x \to 0^+} \sin x \cdot \ln x \][/tex]
As [tex]\( x \)[/tex] approaches [tex]\( 0^+ \)[/tex], [tex]\( \sin x \)[/tex] approaches 0. Meanwhile, [tex]\( \ln x \)[/tex] approaches [tex]\( -\infty \)[/tex].

4. Behavior of the Product:
Even though [tex]\( \ln x \)[/tex] diverges to [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches 0 from the positive side, the fact that [tex]\( \sin x \)[/tex] approaches 0 much faster suggests we might get an indeterminate form. To confirm, consider:
[tex]\[ \sin x \approx x \ \text{for} \ x \ \text{near 0}, \][/tex]
Thus, the product [tex]\( \sin x \cdot \ln x \)[/tex] can be approximated as [tex]\( x \cdot \ln x \)[/tex].

5. Limit of the Approximation:
We now evaluate:
[tex]\[ \lim_{x \to 0^+} x \ln x \][/tex]

Make a substitution to simplify:
Let [tex]\( t = \ln x \)[/tex]. As [tex]\( x \to 0^+ \)[/tex], [tex]\( t \to -\infty \)[/tex]. The substitution [tex]\( x = e^t \)[/tex] gives us:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t \][/tex]

6. Evaluate the Simplified Limit:
[tex]\[ \lim_{t \to -\infty} t \cdot e^t = 0 \][/tex]

Since the exponential function [tex]\( e^t \)[/tex] decays to zero faster than [tex]\( t \)[/tex] grows negatively.

7. Return to Original Expression:
Therefore:
[tex]\[ \lim_{x \to 0^+} \sin x \ \ln x = 0 \][/tex]

8. Exponent Back to Exponential Form:
Using this result, we have:
[tex]\[ \lim_{x \to 0^+} x^{\sin x} = e^{\lim_{x \to 0^+} \sin x \cdot \ln x} = e^0 = 1 \][/tex]

Thus, the result of the limit is:
[tex]\[ \boxed{1} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.