Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The student's answer is not correct. Let's go through the correct simplification step by step.
1. Start with the given expression:
[tex]\[ \left(\frac{x^{\frac{2}{5}} \cdot x^{\frac{4}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
2. Combine the exponents in the numerator:
[tex]\[ x^{\frac{2}{5}} \cdot x^{\frac{4}{5}} = x^{\left(\frac{2}{5} + \frac{4}{5}\right)} = x^{\frac{6}{5}} \][/tex]
Now the expression is:
[tex]\[ \left(\frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
3. Simplify the fraction by subtracting the exponents (using the property [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]):
[tex]\[ \frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}} = x^{\left(\frac{6}{5} - \frac{2}{5}\right)} = x^{\frac{4}{5}} \][/tex]
Now we have:
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} \][/tex]
4. Take the square root (or equivalently, raise the expression to the power of [tex]\( \frac{1}{2} \)[/tex]):
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} = x^{\left(\frac{4}{5} \cdot \frac{1}{2}\right)} = x^{\frac{4}{10}} = x^{\frac{2}{5}} \][/tex]
Therefore, the correct simplified form of the given expression is:
[tex]\[ x^{\frac{2}{5}} \][/tex]
The student's error occurred in the final step where they incorrectly simplified [tex]\(\left(x^{\frac{4}{5}}\right)^{\frac{1}{2}}\)[/tex] to [tex]\(x^{\frac{3}{2}}\)[/tex] instead of the correct [tex]\(x^{\frac{2}{5}}\)[/tex].
1. Start with the given expression:
[tex]\[ \left(\frac{x^{\frac{2}{5}} \cdot x^{\frac{4}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
2. Combine the exponents in the numerator:
[tex]\[ x^{\frac{2}{5}} \cdot x^{\frac{4}{5}} = x^{\left(\frac{2}{5} + \frac{4}{5}\right)} = x^{\frac{6}{5}} \][/tex]
Now the expression is:
[tex]\[ \left(\frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
3. Simplify the fraction by subtracting the exponents (using the property [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]):
[tex]\[ \frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}} = x^{\left(\frac{6}{5} - \frac{2}{5}\right)} = x^{\frac{4}{5}} \][/tex]
Now we have:
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} \][/tex]
4. Take the square root (or equivalently, raise the expression to the power of [tex]\( \frac{1}{2} \)[/tex]):
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} = x^{\left(\frac{4}{5} \cdot \frac{1}{2}\right)} = x^{\frac{4}{10}} = x^{\frac{2}{5}} \][/tex]
Therefore, the correct simplified form of the given expression is:
[tex]\[ x^{\frac{2}{5}} \][/tex]
The student's error occurred in the final step where they incorrectly simplified [tex]\(\left(x^{\frac{4}{5}}\right)^{\frac{1}{2}}\)[/tex] to [tex]\(x^{\frac{3}{2}}\)[/tex] instead of the correct [tex]\(x^{\frac{2}{5}}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.