Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The student's answer is not correct. Let's go through the correct simplification step by step.
1. Start with the given expression:
[tex]\[ \left(\frac{x^{\frac{2}{5}} \cdot x^{\frac{4}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
2. Combine the exponents in the numerator:
[tex]\[ x^{\frac{2}{5}} \cdot x^{\frac{4}{5}} = x^{\left(\frac{2}{5} + \frac{4}{5}\right)} = x^{\frac{6}{5}} \][/tex]
Now the expression is:
[tex]\[ \left(\frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
3. Simplify the fraction by subtracting the exponents (using the property [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]):
[tex]\[ \frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}} = x^{\left(\frac{6}{5} - \frac{2}{5}\right)} = x^{\frac{4}{5}} \][/tex]
Now we have:
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} \][/tex]
4. Take the square root (or equivalently, raise the expression to the power of [tex]\( \frac{1}{2} \)[/tex]):
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} = x^{\left(\frac{4}{5} \cdot \frac{1}{2}\right)} = x^{\frac{4}{10}} = x^{\frac{2}{5}} \][/tex]
Therefore, the correct simplified form of the given expression is:
[tex]\[ x^{\frac{2}{5}} \][/tex]
The student's error occurred in the final step where they incorrectly simplified [tex]\(\left(x^{\frac{4}{5}}\right)^{\frac{1}{2}}\)[/tex] to [tex]\(x^{\frac{3}{2}}\)[/tex] instead of the correct [tex]\(x^{\frac{2}{5}}\)[/tex].
1. Start with the given expression:
[tex]\[ \left(\frac{x^{\frac{2}{5}} \cdot x^{\frac{4}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
2. Combine the exponents in the numerator:
[tex]\[ x^{\frac{2}{5}} \cdot x^{\frac{4}{5}} = x^{\left(\frac{2}{5} + \frac{4}{5}\right)} = x^{\frac{6}{5}} \][/tex]
Now the expression is:
[tex]\[ \left(\frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}}\right)^{\frac{1}{2}} \][/tex]
3. Simplify the fraction by subtracting the exponents (using the property [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]):
[tex]\[ \frac{x^{\frac{6}{5}}}{x^{\frac{2}{5}}} = x^{\left(\frac{6}{5} - \frac{2}{5}\right)} = x^{\frac{4}{5}} \][/tex]
Now we have:
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} \][/tex]
4. Take the square root (or equivalently, raise the expression to the power of [tex]\( \frac{1}{2} \)[/tex]):
[tex]\[ \left(x^{\frac{4}{5}}\right)^{\frac{1}{2}} = x^{\left(\frac{4}{5} \cdot \frac{1}{2}\right)} = x^{\frac{4}{10}} = x^{\frac{2}{5}} \][/tex]
Therefore, the correct simplified form of the given expression is:
[tex]\[ x^{\frac{2}{5}} \][/tex]
The student's error occurred in the final step where they incorrectly simplified [tex]\(\left(x^{\frac{4}{5}}\right)^{\frac{1}{2}}\)[/tex] to [tex]\(x^{\frac{3}{2}}\)[/tex] instead of the correct [tex]\(x^{\frac{2}{5}}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.