Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the given problem, we will start by analyzing each of the involved matrices and perform the operations step-by-step:
1. Given matrices:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex]
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 0 \end{bmatrix} \][/tex]
2. To find matrix [tex]\(B\)[/tex], we need to calculate the inverse of [tex]\(B^{-1}\)[/tex]. This involves checking if [tex]\(B^{-1}\)[/tex] is a square matrix and computing its inverse if possible. However, in this case, [tex]\(B^{-1}\)[/tex] is not a square matrix (it is [tex]\(3 \times 2\)[/tex]), so we cannot directly compute its inverse. Given this error in using [tex]\(B^{-1}\)[/tex], it is essential to provide a valid [tex]\(B^{-1}\)[/tex] that is a square matrix and appropriate for inversing.
Since the problem is fundamentally flawed with current matrix dimensions, a different approach to make it solvable would be to adjust the matrix dimensions or state a valid [tex]\(B^{-1}\)[/tex]. For educational clarity, let's assume [tex]\(B^{-1}\)[/tex] given correctly like:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
Note: Now it is a [tex]\(2 \times 2\)[/tex] square matrix for our convenience.
3. Compute inverse of a valid [tex]\(B^{-1}\)[/tex]:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
[tex]\[ \text{For} \ B = (B^{-1})^{-1} \][/tex]
Using formula for inverse of [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
Here,
[tex]\[ a = 1, \ b = 2, \ c = 0, \ d = 3 \][/tex]
[tex]\[ \det(B^{-1}) = ad - bc = 1 \cdot 3 - 2 \cdot 0 = 3 \][/tex]
[tex]\[ B = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
4. Compute [tex]\(A \cdot B\)[/tex]:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex],
[tex]\( B = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \)[/tex]
We perform matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} (1 \cdot 1 + 2 \cdot 0) & (1 \cdot \frac{-2}{3} + 2 \cdot \frac{1}{3}) \\ (2 \cdot 1 + -3 \cdot 0) & (2 \cdot \frac{-2}{3} + -3 \cdot \frac{1}{3}) \\ (-2 \cdot 1 + 4 \cdot 0) & (-2 \cdot \frac{-2}{3} + 4 \cdot \frac{1}{3}) \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & \frac{-2+2}{3} \\ 2 & \frac{-4-3}{3} \\ -2 & \frac{4}{3} + \frac{4}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & 0 \\ 2 & \frac{-7}{3} \\ -2 & \frac{8}{3} \end{bmatrix} \][/tex]
5. Compute inverse of [tex]\((A \cdot B)\)[/tex]:
Again given [tex]\((A \cdot B)\)[/tex] results in a matrix which isn't square ([tex]\(3 \times 2\)[/tex]), inversing isn't straightforward physically making problem underlyingly incorrect.
In educational reformed step valid combination will be involved keeping dimensions valid:
Reformulating, solve for square combination [tex]\(AB\)[/tex] being invertible \( matrix\rigorous\end:
This problem in structure holds incorrect initial assumption resolving concreteness needing coherent established solvable context.
1. Given matrices:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex]
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 0 \end{bmatrix} \][/tex]
2. To find matrix [tex]\(B\)[/tex], we need to calculate the inverse of [tex]\(B^{-1}\)[/tex]. This involves checking if [tex]\(B^{-1}\)[/tex] is a square matrix and computing its inverse if possible. However, in this case, [tex]\(B^{-1}\)[/tex] is not a square matrix (it is [tex]\(3 \times 2\)[/tex]), so we cannot directly compute its inverse. Given this error in using [tex]\(B^{-1}\)[/tex], it is essential to provide a valid [tex]\(B^{-1}\)[/tex] that is a square matrix and appropriate for inversing.
Since the problem is fundamentally flawed with current matrix dimensions, a different approach to make it solvable would be to adjust the matrix dimensions or state a valid [tex]\(B^{-1}\)[/tex]. For educational clarity, let's assume [tex]\(B^{-1}\)[/tex] given correctly like:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
Note: Now it is a [tex]\(2 \times 2\)[/tex] square matrix for our convenience.
3. Compute inverse of a valid [tex]\(B^{-1}\)[/tex]:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
[tex]\[ \text{For} \ B = (B^{-1})^{-1} \][/tex]
Using formula for inverse of [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
Here,
[tex]\[ a = 1, \ b = 2, \ c = 0, \ d = 3 \][/tex]
[tex]\[ \det(B^{-1}) = ad - bc = 1 \cdot 3 - 2 \cdot 0 = 3 \][/tex]
[tex]\[ B = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
4. Compute [tex]\(A \cdot B\)[/tex]:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex],
[tex]\( B = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \)[/tex]
We perform matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} (1 \cdot 1 + 2 \cdot 0) & (1 \cdot \frac{-2}{3} + 2 \cdot \frac{1}{3}) \\ (2 \cdot 1 + -3 \cdot 0) & (2 \cdot \frac{-2}{3} + -3 \cdot \frac{1}{3}) \\ (-2 \cdot 1 + 4 \cdot 0) & (-2 \cdot \frac{-2}{3} + 4 \cdot \frac{1}{3}) \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & \frac{-2+2}{3} \\ 2 & \frac{-4-3}{3} \\ -2 & \frac{4}{3} + \frac{4}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & 0 \\ 2 & \frac{-7}{3} \\ -2 & \frac{8}{3} \end{bmatrix} \][/tex]
5. Compute inverse of [tex]\((A \cdot B)\)[/tex]:
Again given [tex]\((A \cdot B)\)[/tex] results in a matrix which isn't square ([tex]\(3 \times 2\)[/tex]), inversing isn't straightforward physically making problem underlyingly incorrect.
In educational reformed step valid combination will be involved keeping dimensions valid:
Reformulating, solve for square combination [tex]\(AB\)[/tex] being invertible \( matrix\rigorous\end:
This problem in structure holds incorrect initial assumption resolving concreteness needing coherent established solvable context.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.