Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given problem, we will start by analyzing each of the involved matrices and perform the operations step-by-step:
1. Given matrices:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex]
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 0 \end{bmatrix} \][/tex]
2. To find matrix [tex]\(B\)[/tex], we need to calculate the inverse of [tex]\(B^{-1}\)[/tex]. This involves checking if [tex]\(B^{-1}\)[/tex] is a square matrix and computing its inverse if possible. However, in this case, [tex]\(B^{-1}\)[/tex] is not a square matrix (it is [tex]\(3 \times 2\)[/tex]), so we cannot directly compute its inverse. Given this error in using [tex]\(B^{-1}\)[/tex], it is essential to provide a valid [tex]\(B^{-1}\)[/tex] that is a square matrix and appropriate for inversing.
Since the problem is fundamentally flawed with current matrix dimensions, a different approach to make it solvable would be to adjust the matrix dimensions or state a valid [tex]\(B^{-1}\)[/tex]. For educational clarity, let's assume [tex]\(B^{-1}\)[/tex] given correctly like:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
Note: Now it is a [tex]\(2 \times 2\)[/tex] square matrix for our convenience.
3. Compute inverse of a valid [tex]\(B^{-1}\)[/tex]:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
[tex]\[ \text{For} \ B = (B^{-1})^{-1} \][/tex]
Using formula for inverse of [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
Here,
[tex]\[ a = 1, \ b = 2, \ c = 0, \ d = 3 \][/tex]
[tex]\[ \det(B^{-1}) = ad - bc = 1 \cdot 3 - 2 \cdot 0 = 3 \][/tex]
[tex]\[ B = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
4. Compute [tex]\(A \cdot B\)[/tex]:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex],
[tex]\( B = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \)[/tex]
We perform matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} (1 \cdot 1 + 2 \cdot 0) & (1 \cdot \frac{-2}{3} + 2 \cdot \frac{1}{3}) \\ (2 \cdot 1 + -3 \cdot 0) & (2 \cdot \frac{-2}{3} + -3 \cdot \frac{1}{3}) \\ (-2 \cdot 1 + 4 \cdot 0) & (-2 \cdot \frac{-2}{3} + 4 \cdot \frac{1}{3}) \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & \frac{-2+2}{3} \\ 2 & \frac{-4-3}{3} \\ -2 & \frac{4}{3} + \frac{4}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & 0 \\ 2 & \frac{-7}{3} \\ -2 & \frac{8}{3} \end{bmatrix} \][/tex]
5. Compute inverse of [tex]\((A \cdot B)\)[/tex]:
Again given [tex]\((A \cdot B)\)[/tex] results in a matrix which isn't square ([tex]\(3 \times 2\)[/tex]), inversing isn't straightforward physically making problem underlyingly incorrect.
In educational reformed step valid combination will be involved keeping dimensions valid:
Reformulating, solve for square combination [tex]\(AB\)[/tex] being invertible \( matrix\rigorous\end:
This problem in structure holds incorrect initial assumption resolving concreteness needing coherent established solvable context.
1. Given matrices:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex]
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 0 \end{bmatrix} \][/tex]
2. To find matrix [tex]\(B\)[/tex], we need to calculate the inverse of [tex]\(B^{-1}\)[/tex]. This involves checking if [tex]\(B^{-1}\)[/tex] is a square matrix and computing its inverse if possible. However, in this case, [tex]\(B^{-1}\)[/tex] is not a square matrix (it is [tex]\(3 \times 2\)[/tex]), so we cannot directly compute its inverse. Given this error in using [tex]\(B^{-1}\)[/tex], it is essential to provide a valid [tex]\(B^{-1}\)[/tex] that is a square matrix and appropriate for inversing.
Since the problem is fundamentally flawed with current matrix dimensions, a different approach to make it solvable would be to adjust the matrix dimensions or state a valid [tex]\(B^{-1}\)[/tex]. For educational clarity, let's assume [tex]\(B^{-1}\)[/tex] given correctly like:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
Note: Now it is a [tex]\(2 \times 2\)[/tex] square matrix for our convenience.
3. Compute inverse of a valid [tex]\(B^{-1}\)[/tex]:
[tex]\[ B^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \][/tex]
[tex]\[ \text{For} \ B = (B^{-1})^{-1} \][/tex]
Using formula for inverse of [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]
Here,
[tex]\[ a = 1, \ b = 2, \ c = 0, \ d = 3 \][/tex]
[tex]\[ \det(B^{-1}) = ad - bc = 1 \cdot 3 - 2 \cdot 0 = 3 \][/tex]
[tex]\[ B = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
4. Compute [tex]\(A \cdot B\)[/tex]:
[tex]\( A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \)[/tex],
[tex]\( B = \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \)[/tex]
We perform matrix multiplication:
[tex]\[ A \cdot B = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} (1 \cdot 1 + 2 \cdot 0) & (1 \cdot \frac{-2}{3} + 2 \cdot \frac{1}{3}) \\ (2 \cdot 1 + -3 \cdot 0) & (2 \cdot \frac{-2}{3} + -3 \cdot \frac{1}{3}) \\ (-2 \cdot 1 + 4 \cdot 0) & (-2 \cdot \frac{-2}{3} + 4 \cdot \frac{1}{3}) \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & \frac{-2+2}{3} \\ 2 & \frac{-4-3}{3} \\ -2 & \frac{4}{3} + \frac{4}{3} \end{bmatrix} \][/tex]
[tex]\[ = \begin{bmatrix} 1 & 0 \\ 2 & \frac{-7}{3} \\ -2 & \frac{8}{3} \end{bmatrix} \][/tex]
5. Compute inverse of [tex]\((A \cdot B)\)[/tex]:
Again given [tex]\((A \cdot B)\)[/tex] results in a matrix which isn't square ([tex]\(3 \times 2\)[/tex]), inversing isn't straightforward physically making problem underlyingly incorrect.
In educational reformed step valid combination will be involved keeping dimensions valid:
Reformulating, solve for square combination [tex]\(AB\)[/tex] being invertible \( matrix\rigorous\end:
This problem in structure holds incorrect initial assumption resolving concreteness needing coherent established solvable context.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.