Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To write the equation representing the relationship between the number of days and the total charges for placing a classified ad, we will use the given data points and derive the equation in slope-intercept form [tex]\( y = mx + b \)[/tex].
### Step-by-Step Solution:
1. Identify the Data Points:
The given data points are:
[tex]\[ (2, 8), (4, 13), (6, 18) \][/tex]
2. Calculate the Slope (m):
To find the slope ([tex]\(m\)[/tex]), we use two of the given data points. Let's use the points [tex]\((2, 8)\)[/tex] and [tex]\((4, 13)\)[/tex]:
[tex]\[ \text{Slope} (m) = \frac{\Delta y}{\Delta x} = \frac{13 - 8}{4 - 2} = \frac{5}{2} = 2.5 \][/tex]
3. Determine the Intercept (b):
Using the slope and one of the points (let's use [tex]\((2, 8)\)[/tex]), we can find the y-intercept ([tex]\(b\)[/tex]) by plugging the values into the slope-intercept form equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 8 = 2.5 \cdot 2 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 8 = 5 + b \\ b = 8 - 5 \\ b = 3 \][/tex]
4. Formulate the Equation:
With the slope [tex]\(m = 2.5\)[/tex] and the y-intercept [tex]\(b = 3\)[/tex], the equation in slope-intercept form is:
[tex]\[ y = 2.5x + 3 \][/tex]
### Conclusion:
The equation representing the relationship between the number of days (x) and the total charges (y) for placing a classified ad is:
[tex]\[ y = 2.5x + 3 \][/tex]
This equation implies that the newspaper charges a flat fee of [tex]$3.00, plus an additional $[/tex]2.50 per day for the ad.
### Step-by-Step Solution:
1. Identify the Data Points:
The given data points are:
[tex]\[ (2, 8), (4, 13), (6, 18) \][/tex]
2. Calculate the Slope (m):
To find the slope ([tex]\(m\)[/tex]), we use two of the given data points. Let's use the points [tex]\((2, 8)\)[/tex] and [tex]\((4, 13)\)[/tex]:
[tex]\[ \text{Slope} (m) = \frac{\Delta y}{\Delta x} = \frac{13 - 8}{4 - 2} = \frac{5}{2} = 2.5 \][/tex]
3. Determine the Intercept (b):
Using the slope and one of the points (let's use [tex]\((2, 8)\)[/tex]), we can find the y-intercept ([tex]\(b\)[/tex]) by plugging the values into the slope-intercept form equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 8 = 2.5 \cdot 2 + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 8 = 5 + b \\ b = 8 - 5 \\ b = 3 \][/tex]
4. Formulate the Equation:
With the slope [tex]\(m = 2.5\)[/tex] and the y-intercept [tex]\(b = 3\)[/tex], the equation in slope-intercept form is:
[tex]\[ y = 2.5x + 3 \][/tex]
### Conclusion:
The equation representing the relationship between the number of days (x) and the total charges (y) for placing a classified ad is:
[tex]\[ y = 2.5x + 3 \][/tex]
This equation implies that the newspaper charges a flat fee of [tex]$3.00, plus an additional $[/tex]2.50 per day for the ad.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.