At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the product of [tex]\((-2 \sqrt{20k})(5 \sqrt{8k^3})\)[/tex], we need to follow these steps:
1. Multiply the coefficients: First, multiply the numerical coefficients outside of the square roots.
[tex]\[ (-2) \cdot 5 = -10 \][/tex]
So the combined coefficient is [tex]\(-10\)[/tex].
2. Multiply the terms under the radicals:
[tex]\[ \sqrt{20k} \cdot \sqrt{8k^3} \][/tex]
Using the property of radicals [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)[/tex],
[tex]\[ \sqrt{20k \cdot 8k^3} = \sqrt{160k \cdot k^3} = \sqrt{160k^4} \][/tex]
3. Combine the results:
[tex]\[-10\sqrt{160k^4}\][/tex]
Thus, the expression equivalent to the given product is:
[tex]\[ -10 \sqrt{160 k^4} \][/tex]
Therefore, the correct choice is:
[tex]\[ -10 \sqrt{160 k^4} \][/tex]
1. Multiply the coefficients: First, multiply the numerical coefficients outside of the square roots.
[tex]\[ (-2) \cdot 5 = -10 \][/tex]
So the combined coefficient is [tex]\(-10\)[/tex].
2. Multiply the terms under the radicals:
[tex]\[ \sqrt{20k} \cdot \sqrt{8k^3} \][/tex]
Using the property of radicals [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)[/tex],
[tex]\[ \sqrt{20k \cdot 8k^3} = \sqrt{160k \cdot k^3} = \sqrt{160k^4} \][/tex]
3. Combine the results:
[tex]\[-10\sqrt{160k^4}\][/tex]
Thus, the expression equivalent to the given product is:
[tex]\[ -10 \sqrt{160 k^4} \][/tex]
Therefore, the correct choice is:
[tex]\[ -10 \sqrt{160 k^4} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.