Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the quadratic equation [tex]\(x^2 - x - 6 = 0\)[/tex] step by step.
1. Identify the coefficients: In the standard form of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = -1\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -6\)[/tex] (constant term)
2. Factor the quadratic equation: We need to find two numbers that multiply to [tex]\(a \cdot c = 1 \cdot (-6) = -6\)[/tex] and add up to [tex]\(b = -1\)[/tex]. Consider the pairs of factors of [tex]\(-6\)[/tex]:
- [tex]\(1 \cdot -6\)[/tex]
- [tex]\(-1 \cdot 6\)[/tex]
- [tex]\(2 \cdot -3\)[/tex]
- [tex]\(-2 \cdot 3\)[/tex]
The pair that adds up to [tex]\(-1\)[/tex] is [tex]\(2\)[/tex] and [tex]\(-3\)[/tex].
3. Rewrite the middle term: Rewrite the quadratic expression using these numbers:
[tex]\[ x^2 - x - 6 = x^2 + 2x - 3x - 6 \][/tex]
4. Group the terms: Group the terms to facilitate factoring by grouping:
[tex]\[ x^2 + 2x - 3x - 6 = (x^2 + 2x) + (-3x - 6) \][/tex]
5. Factor by grouping: Factor out the common factors in each group:
[tex]\[ (x(x + 2)) + (-3(x + 2)) \][/tex]
Notice [tex]\(x + 2\)[/tex] is a common factor.
6. Factor out the common binomial factor:
[tex]\[ (x - 3)(x + 2) = 0 \][/tex]
7. Solve for the roots: Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Solving these equations gives:
[tex]\[ x = 3 \quad \text{or} \quad x = -2 \][/tex]
So, the solutions to the equation [tex]\(x^2 - x - 6 = 0\)[/tex] are [tex]\(x = 3\)[/tex] and [tex]\(x = -2\)[/tex].
1. Identify the coefficients: In the standard form of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = -1\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -6\)[/tex] (constant term)
2. Factor the quadratic equation: We need to find two numbers that multiply to [tex]\(a \cdot c = 1 \cdot (-6) = -6\)[/tex] and add up to [tex]\(b = -1\)[/tex]. Consider the pairs of factors of [tex]\(-6\)[/tex]:
- [tex]\(1 \cdot -6\)[/tex]
- [tex]\(-1 \cdot 6\)[/tex]
- [tex]\(2 \cdot -3\)[/tex]
- [tex]\(-2 \cdot 3\)[/tex]
The pair that adds up to [tex]\(-1\)[/tex] is [tex]\(2\)[/tex] and [tex]\(-3\)[/tex].
3. Rewrite the middle term: Rewrite the quadratic expression using these numbers:
[tex]\[ x^2 - x - 6 = x^2 + 2x - 3x - 6 \][/tex]
4. Group the terms: Group the terms to facilitate factoring by grouping:
[tex]\[ x^2 + 2x - 3x - 6 = (x^2 + 2x) + (-3x - 6) \][/tex]
5. Factor by grouping: Factor out the common factors in each group:
[tex]\[ (x(x + 2)) + (-3(x + 2)) \][/tex]
Notice [tex]\(x + 2\)[/tex] is a common factor.
6. Factor out the common binomial factor:
[tex]\[ (x - 3)(x + 2) = 0 \][/tex]
7. Solve for the roots: Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Solving these equations gives:
[tex]\[ x = 3 \quad \text{or} \quad x = -2 \][/tex]
So, the solutions to the equation [tex]\(x^2 - x - 6 = 0\)[/tex] are [tex]\(x = 3\)[/tex] and [tex]\(x = -2\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.