At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the quadratic equation [tex]\(x^2 - x - 6 = 0\)[/tex] step by step.
1. Identify the coefficients: In the standard form of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = -1\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -6\)[/tex] (constant term)
2. Factor the quadratic equation: We need to find two numbers that multiply to [tex]\(a \cdot c = 1 \cdot (-6) = -6\)[/tex] and add up to [tex]\(b = -1\)[/tex]. Consider the pairs of factors of [tex]\(-6\)[/tex]:
- [tex]\(1 \cdot -6\)[/tex]
- [tex]\(-1 \cdot 6\)[/tex]
- [tex]\(2 \cdot -3\)[/tex]
- [tex]\(-2 \cdot 3\)[/tex]
The pair that adds up to [tex]\(-1\)[/tex] is [tex]\(2\)[/tex] and [tex]\(-3\)[/tex].
3. Rewrite the middle term: Rewrite the quadratic expression using these numbers:
[tex]\[ x^2 - x - 6 = x^2 + 2x - 3x - 6 \][/tex]
4. Group the terms: Group the terms to facilitate factoring by grouping:
[tex]\[ x^2 + 2x - 3x - 6 = (x^2 + 2x) + (-3x - 6) \][/tex]
5. Factor by grouping: Factor out the common factors in each group:
[tex]\[ (x(x + 2)) + (-3(x + 2)) \][/tex]
Notice [tex]\(x + 2\)[/tex] is a common factor.
6. Factor out the common binomial factor:
[tex]\[ (x - 3)(x + 2) = 0 \][/tex]
7. Solve for the roots: Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Solving these equations gives:
[tex]\[ x = 3 \quad \text{or} \quad x = -2 \][/tex]
So, the solutions to the equation [tex]\(x^2 - x - 6 = 0\)[/tex] are [tex]\(x = 3\)[/tex] and [tex]\(x = -2\)[/tex].
1. Identify the coefficients: In the standard form of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = -1\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -6\)[/tex] (constant term)
2. Factor the quadratic equation: We need to find two numbers that multiply to [tex]\(a \cdot c = 1 \cdot (-6) = -6\)[/tex] and add up to [tex]\(b = -1\)[/tex]. Consider the pairs of factors of [tex]\(-6\)[/tex]:
- [tex]\(1 \cdot -6\)[/tex]
- [tex]\(-1 \cdot 6\)[/tex]
- [tex]\(2 \cdot -3\)[/tex]
- [tex]\(-2 \cdot 3\)[/tex]
The pair that adds up to [tex]\(-1\)[/tex] is [tex]\(2\)[/tex] and [tex]\(-3\)[/tex].
3. Rewrite the middle term: Rewrite the quadratic expression using these numbers:
[tex]\[ x^2 - x - 6 = x^2 + 2x - 3x - 6 \][/tex]
4. Group the terms: Group the terms to facilitate factoring by grouping:
[tex]\[ x^2 + 2x - 3x - 6 = (x^2 + 2x) + (-3x - 6) \][/tex]
5. Factor by grouping: Factor out the common factors in each group:
[tex]\[ (x(x + 2)) + (-3(x + 2)) \][/tex]
Notice [tex]\(x + 2\)[/tex] is a common factor.
6. Factor out the common binomial factor:
[tex]\[ (x - 3)(x + 2) = 0 \][/tex]
7. Solve for the roots: Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Solving these equations gives:
[tex]\[ x = 3 \quad \text{or} \quad x = -2 \][/tex]
So, the solutions to the equation [tex]\(x^2 - x - 6 = 0\)[/tex] are [tex]\(x = 3\)[/tex] and [tex]\(x = -2\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.