At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\(x^2 = 2x + 3\)[/tex] by finding the system of equations that can be graphed, we want to express both sides of the equation as separate functions of [tex]\(x\)[/tex]. Then, we'll see which system of equations involves these functions.
Starting from the given equation:
[tex]\[ x^2 = 2x + 3 \][/tex]
We can rearrange the terms to form:
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
Now we need to find a system of equations where one equation represents [tex]\(y = x^2\)[/tex] and the other represents [tex]\(y = 2x + 3\)[/tex].
Let's look at the options provided:
1. [tex]\(\left\{\begin{array}{l} y = x^2 + 2x + 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
2. [tex]\(\left\{\begin{array}{l} y = x^2 - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
3. [tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
4. [tex]\(\left\{\begin{array}{l} y = x^2 \\ y = 2x + 3 \end{array}\right.\)[/tex]
We can see that the correct system should include the equation [tex]\(y = x^2\)[/tex] on one side and [tex]\(y = 2x + 3\)[/tex] on the other side.
Upon comparing and analysis of each options:
1. [tex]\(\left\{\begin{array}{l} y = x^2 + 2x + 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] is incorrect because of the left part [tex]\(x^2 + 2x + 3 \neq x^2\)[/tex]
2. [tex]\(\left\{\begin{array}{l} y = x^2 - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] doesn't match the rearranged [tex]\(x^2 - 2x - 3 \equiv 0\)[/tex]
3. [tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] rearranged terms PERFECTLY combines both full equations.
4. [tex]\(\left\{\begin{array}{l} y = x^2 \\ y = 2x + 3 \end{array}\right.\)[/tex] is incomplete, as it misses the component of matching BOTH equations.
Thus, the correct system of equations to graph in order to find the solutions to [tex]\(x^2 = 2x + 3\)[/tex] is:
[tex]\[ \left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right. \][/tex]
Starting from the given equation:
[tex]\[ x^2 = 2x + 3 \][/tex]
We can rearrange the terms to form:
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
Now we need to find a system of equations where one equation represents [tex]\(y = x^2\)[/tex] and the other represents [tex]\(y = 2x + 3\)[/tex].
Let's look at the options provided:
1. [tex]\(\left\{\begin{array}{l} y = x^2 + 2x + 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
2. [tex]\(\left\{\begin{array}{l} y = x^2 - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
3. [tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]
4. [tex]\(\left\{\begin{array}{l} y = x^2 \\ y = 2x + 3 \end{array}\right.\)[/tex]
We can see that the correct system should include the equation [tex]\(y = x^2\)[/tex] on one side and [tex]\(y = 2x + 3\)[/tex] on the other side.
Upon comparing and analysis of each options:
1. [tex]\(\left\{\begin{array}{l} y = x^2 + 2x + 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] is incorrect because of the left part [tex]\(x^2 + 2x + 3 \neq x^2\)[/tex]
2. [tex]\(\left\{\begin{array}{l} y = x^2 - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] doesn't match the rearranged [tex]\(x^2 - 2x - 3 \equiv 0\)[/tex]
3. [tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex] rearranged terms PERFECTLY combines both full equations.
4. [tex]\(\left\{\begin{array}{l} y = x^2 \\ y = 2x + 3 \end{array}\right.\)[/tex] is incomplete, as it misses the component of matching BOTH equations.
Thus, the correct system of equations to graph in order to find the solutions to [tex]\(x^2 = 2x + 3\)[/tex] is:
[tex]\[ \left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right. \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.