Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\(\tan 45^{\circ}\)[/tex], we need to evaluate the trigonometric function tangent for the angle of 45 degrees.
1. Recognize the angle and its position:
- The angle [tex]\(45^{\circ}\)[/tex] is in the first quadrant, where all trigonometric functions are positive.
2. Understand the properties of tangent:
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side to the adjacent side.
- For a [tex]\(45^{\circ}\)[/tex] angle in a right triangle, both the opposite and adjacent sides are equal. Hence, their ratio is 1.
3. Evaluate [tex]\(\tan 45^{\circ}\)[/tex]:
- Since [tex]\(\tan 45^{\circ}\)[/tex] is the ratio of two equal sides, this gives [tex]\(\tan 45^{\circ} = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{1} = 1\)[/tex].
4. Answer:
- Therefore, [tex]\(\tan 45^{\circ} = 1\)[/tex].
Given the options:
A. [tex]\(\frac{1}{2}\)[/tex]
B. [tex]\(\sqrt{2}\)[/tex]
C. [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
D. 1
The correct answer is:
D. 1.
1. Recognize the angle and its position:
- The angle [tex]\(45^{\circ}\)[/tex] is in the first quadrant, where all trigonometric functions are positive.
2. Understand the properties of tangent:
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side to the adjacent side.
- For a [tex]\(45^{\circ}\)[/tex] angle in a right triangle, both the opposite and adjacent sides are equal. Hence, their ratio is 1.
3. Evaluate [tex]\(\tan 45^{\circ}\)[/tex]:
- Since [tex]\(\tan 45^{\circ}\)[/tex] is the ratio of two equal sides, this gives [tex]\(\tan 45^{\circ} = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{1} = 1\)[/tex].
4. Answer:
- Therefore, [tex]\(\tan 45^{\circ} = 1\)[/tex].
Given the options:
A. [tex]\(\frac{1}{2}\)[/tex]
B. [tex]\(\sqrt{2}\)[/tex]
C. [tex]\(\frac{1}{\sqrt{2}}\)[/tex]
D. 1
The correct answer is:
D. 1.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.