At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the extremes of the given proportion [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex], let's go through the following steps:
1. Understanding Proportions: A proportion is an equation stating that two ratios are equivalent. In the proportion [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex], the first and last terms [tex]\(a\)[/tex] and [tex]\(d\)[/tex] are called the extremes, while the second and third terms [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are called the means.
2. Identifying Terms in the Proportion: The given proportion is [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex]. Breaking this down:
- The numerator of the first ratio is 3.
- The denominator of the first ratio is 4.
- The numerator of the second ratio is 6.
- The denominator of the second ratio is 8.
3. Determining the Extremes: According to the definition of extremes in a proportion, the extremes are the first term of the first ratio and the last term of the second ratio.
- The first term of the first ratio ([tex]\(\frac{3}{4}\)[/tex]) is 3.
- The last term of the second ratio ([tex]\(\frac{6}{8}\)[/tex]) is 8.
Hence, the extremes of the given proportion [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex] are:
[tex]\[ \boxed{3 \text{ and } 8} \][/tex]
So the correct answer is:
A. 3 and 8
1. Understanding Proportions: A proportion is an equation stating that two ratios are equivalent. In the proportion [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex], the first and last terms [tex]\(a\)[/tex] and [tex]\(d\)[/tex] are called the extremes, while the second and third terms [tex]\(b\)[/tex] and [tex]\(c\)[/tex] are called the means.
2. Identifying Terms in the Proportion: The given proportion is [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex]. Breaking this down:
- The numerator of the first ratio is 3.
- The denominator of the first ratio is 4.
- The numerator of the second ratio is 6.
- The denominator of the second ratio is 8.
3. Determining the Extremes: According to the definition of extremes in a proportion, the extremes are the first term of the first ratio and the last term of the second ratio.
- The first term of the first ratio ([tex]\(\frac{3}{4}\)[/tex]) is 3.
- The last term of the second ratio ([tex]\(\frac{6}{8}\)[/tex]) is 8.
Hence, the extremes of the given proportion [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex] are:
[tex]\[ \boxed{3 \text{ and } 8} \][/tex]
So the correct answer is:
A. 3 and 8
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.