At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex], we need to understand where the denominator [tex]\(g(x)\)[/tex] is equal to zero, since division by zero is undefined.
1. Identify the functions:
- [tex]\(f(x) = x^2 - 25\)[/tex]
- [tex]\(g(x) = x - 5\)[/tex]
2. Set the denominator [tex]\(g(x)\)[/tex] to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ g(x) = x - 5 \\ x - 5 = 0 \\ x = 5 \][/tex]
Therefore, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex].
3. Determine the domain:
- The domain of [tex]\(\left( \frac{f}{g} \right)(x)\)[/tex] includes all real values of [tex]\(x\)[/tex] except where [tex]\(g(x) = 0\)[/tex], which happens at [tex]\(x = 5\)[/tex].
- As [tex]\(g(5) = 0\)[/tex], [tex]\(\left(\frac{f}{g}\right)(5)\)[/tex] is undefined, and thus [tex]\(x = 5\)[/tex] must be excluded from the domain.
4. Conclusion:
The domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex].
Hence, the correct domain is:
- all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex]
1. Identify the functions:
- [tex]\(f(x) = x^2 - 25\)[/tex]
- [tex]\(g(x) = x - 5\)[/tex]
2. Set the denominator [tex]\(g(x)\)[/tex] to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ g(x) = x - 5 \\ x - 5 = 0 \\ x = 5 \][/tex]
Therefore, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex].
3. Determine the domain:
- The domain of [tex]\(\left( \frac{f}{g} \right)(x)\)[/tex] includes all real values of [tex]\(x\)[/tex] except where [tex]\(g(x) = 0\)[/tex], which happens at [tex]\(x = 5\)[/tex].
- As [tex]\(g(5) = 0\)[/tex], [tex]\(\left(\frac{f}{g}\right)(5)\)[/tex] is undefined, and thus [tex]\(x = 5\)[/tex] must be excluded from the domain.
4. Conclusion:
The domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex].
Hence, the correct domain is:
- all real values of [tex]\(x\)[/tex] except [tex]\(x = 5\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.