Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem of finding the dimensions of the original square photo, we start with the equation given:
[tex]$(x + 10)^2 = 256$[/tex]
Here, [tex]\( x \)[/tex] represents the side measure of the original square photo, and the equation describes the relationship between the side length of the original photo and the enlarged photo.
Step-by-Step Breakdown:
1. Understand the equation:
The equation [tex]\((x + 10)^2 = 256\)[/tex] suggests that if you add 10 inches to each side of the original square photo, the area of the enlarged photo becomes 256 square inches.
2. Solve for [tex]\( x + 10 \)[/tex]:
To isolate [tex]\( x \)[/tex], we first take the square root of both sides of the equation:
[tex]\[ \sqrt{(x + 10)^2} = \sqrt{256} \][/tex]
This simplifies to:
[tex]\[ x + 10 = 16 \quad \text{or} \quad x + 10 = -16 \][/tex]
3. Determine valid solution:
Since [tex]\( x \)[/tex] represents a physical length (the side of a square), we discard the negative solution as length cannot be negative. Therefore:
[tex]\[ x + 10 = 16 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Subtract 10 from both sides to find [tex]\( x \)[/tex]:
[tex]\[ x = 16 - 10 \][/tex]
Which gives us:
[tex]\[ x = 6 \][/tex]
5. Verify the solution:
The original side length [tex]\( x \)[/tex] is therefore 6 inches. To confirm this, we can check our work:
[tex]\[ (6 + 10)^2 = 16^2 = 256 \][/tex]
Which is correct, since the area of the enlarged photo indeed turns out to be 256 square inches.
Conclusion:
The dimensions of the original square photo were [tex]\(6\)[/tex] inches by [tex]\(6\)[/tex] inches. Therefore, the correct answer is:
6 inches by 6 inches.
[tex]$(x + 10)^2 = 256$[/tex]
Here, [tex]\( x \)[/tex] represents the side measure of the original square photo, and the equation describes the relationship between the side length of the original photo and the enlarged photo.
Step-by-Step Breakdown:
1. Understand the equation:
The equation [tex]\((x + 10)^2 = 256\)[/tex] suggests that if you add 10 inches to each side of the original square photo, the area of the enlarged photo becomes 256 square inches.
2. Solve for [tex]\( x + 10 \)[/tex]:
To isolate [tex]\( x \)[/tex], we first take the square root of both sides of the equation:
[tex]\[ \sqrt{(x + 10)^2} = \sqrt{256} \][/tex]
This simplifies to:
[tex]\[ x + 10 = 16 \quad \text{or} \quad x + 10 = -16 \][/tex]
3. Determine valid solution:
Since [tex]\( x \)[/tex] represents a physical length (the side of a square), we discard the negative solution as length cannot be negative. Therefore:
[tex]\[ x + 10 = 16 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Subtract 10 from both sides to find [tex]\( x \)[/tex]:
[tex]\[ x = 16 - 10 \][/tex]
Which gives us:
[tex]\[ x = 6 \][/tex]
5. Verify the solution:
The original side length [tex]\( x \)[/tex] is therefore 6 inches. To confirm this, we can check our work:
[tex]\[ (6 + 10)^2 = 16^2 = 256 \][/tex]
Which is correct, since the area of the enlarged photo indeed turns out to be 256 square inches.
Conclusion:
The dimensions of the original square photo were [tex]\(6\)[/tex] inches by [tex]\(6\)[/tex] inches. Therefore, the correct answer is:
6 inches by 6 inches.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.