Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the possible values for [tex]\( n \)[/tex] in a triangle with side lengths [tex]\( 2x + 2 \, \text{ft} \)[/tex], [tex]\( x + 3 \, \text{ft} \)[/tex], and [tex]\( n \, \text{ft} \)[/tex], we need to apply the triangle inequality theorem. The theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
We have three inequalities to consider:
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
Let’s solve each inequality step-by-step:
1. For the first inequality:
[tex]\[ (2x + 2) + (x + 3) > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
[tex]\[ n < 3x + 5 \][/tex]
2. For the second inequality:
[tex]\[ (2x + 2) + n > (x + 3) \][/tex]
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + n + 2 > x + 3 \][/tex]
[tex]\[ 2x + n > x + 1 \][/tex]
[tex]\[ n > x - 1 \][/tex]
3. For the third inequality:
[tex]\[ (x + 3) + n > (2x + 2) \][/tex]
[tex]\[ x + n + 3 > 2x + 2 \][/tex]
[tex]\[ n + x + 3 > 2x + 2 \][/tex]
[tex]\[ n + 3 > x + 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Notice that the result from the third inequality [tex]\( n > x - 1 \)[/tex] is the same as the result from the second inequality. Therefore, the combined simplified inequalities are:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, we have concluded that the expression representing the possible values of [tex]\( n \)[/tex] is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Therefore, the correct answer is:
[tex]\[ x-1
We have three inequalities to consider:
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
Let’s solve each inequality step-by-step:
1. For the first inequality:
[tex]\[ (2x + 2) + (x + 3) > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
[tex]\[ n < 3x + 5 \][/tex]
2. For the second inequality:
[tex]\[ (2x + 2) + n > (x + 3) \][/tex]
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + n + 2 > x + 3 \][/tex]
[tex]\[ 2x + n > x + 1 \][/tex]
[tex]\[ n > x - 1 \][/tex]
3. For the third inequality:
[tex]\[ (x + 3) + n > (2x + 2) \][/tex]
[tex]\[ x + n + 3 > 2x + 2 \][/tex]
[tex]\[ n + x + 3 > 2x + 2 \][/tex]
[tex]\[ n + 3 > x + 2 \][/tex]
[tex]\[ n > x - 1 \][/tex]
Notice that the result from the third inequality [tex]\( n > x - 1 \)[/tex] is the same as the result from the second inequality. Therefore, the combined simplified inequalities are:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thus, we have concluded that the expression representing the possible values of [tex]\( n \)[/tex] is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Therefore, the correct answer is:
[tex]\[ x-1
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.