At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's break down the problem to find a suitable inequality that describes the given scenario.
1. The total cost of the train ticket is made up of two components:
- An initial fee of [tex]$5. - An additional fee of $[/tex]2.75 per stop.
2. Julia has a total of [tex]$21 to spend on the ticket. We are asked to determine the largest number of stops, denoted by \( S \), that Julia can afford, given her budget constraint. The cost of the ticket in terms of the number of stops (\( S \)) can be modeled as: \[ \text{Total Cost} = 5 + 2.75 \cdot S \] Julia's budget constraint is that the total cost should not exceed $[/tex]21. Therefore, the inequality that represents this situation is:
[tex]\[ 5 + 2.75 \cdot S \leq 21 \][/tex]
So, the correct inequality is:
(A) [tex]\( 5 + 2.75 \cdot S \leq 21 \)[/tex]
To verify the largest number of stops Julia can afford, we need to solve this inequality for [tex]\( S \)[/tex].
Rewriting the inequality:
[tex]\[ 5 + 2.75 \cdot S \leq 21 \][/tex]
Subtract 5 from both sides:
[tex]\[ 2.75 \cdot S \leq 16 \][/tex]
Next, divide both sides by 2.75:
[tex]\[ S \leq \frac{16}{2.75} \][/tex]
This results in:
[tex]\[ S \leq 5.818181818181818 \][/tex]
Thus, the largest number of whole stops Julia can afford is 5, as she cannot purchase a fraction of a stop.
In summary, option (A) [tex]\( 5 + 2.75 \cdot S \leq 21 \)[/tex] correctly describes the scenario, and the largest number of stops Julia can afford, based on her budget, is 5 stops.
1. The total cost of the train ticket is made up of two components:
- An initial fee of [tex]$5. - An additional fee of $[/tex]2.75 per stop.
2. Julia has a total of [tex]$21 to spend on the ticket. We are asked to determine the largest number of stops, denoted by \( S \), that Julia can afford, given her budget constraint. The cost of the ticket in terms of the number of stops (\( S \)) can be modeled as: \[ \text{Total Cost} = 5 + 2.75 \cdot S \] Julia's budget constraint is that the total cost should not exceed $[/tex]21. Therefore, the inequality that represents this situation is:
[tex]\[ 5 + 2.75 \cdot S \leq 21 \][/tex]
So, the correct inequality is:
(A) [tex]\( 5 + 2.75 \cdot S \leq 21 \)[/tex]
To verify the largest number of stops Julia can afford, we need to solve this inequality for [tex]\( S \)[/tex].
Rewriting the inequality:
[tex]\[ 5 + 2.75 \cdot S \leq 21 \][/tex]
Subtract 5 from both sides:
[tex]\[ 2.75 \cdot S \leq 16 \][/tex]
Next, divide both sides by 2.75:
[tex]\[ S \leq \frac{16}{2.75} \][/tex]
This results in:
[tex]\[ S \leq 5.818181818181818 \][/tex]
Thus, the largest number of whole stops Julia can afford is 5, as she cannot purchase a fraction of a stop.
In summary, option (A) [tex]\( 5 + 2.75 \cdot S \leq 21 \)[/tex] correctly describes the scenario, and the largest number of stops Julia can afford, based on her budget, is 5 stops.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.