Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct ionization equation for calcium iodide (CaI₂) in water, let's go through each option and analyze the chemical reactions:
1. Option A:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + 2 I^{-}(aq) \][/tex]
In this option, solid calcium iodide dissociates into calcium ions and iodide ions when dissolved in water. This is a typical ionic dissociation process for an ionic compound like CaI₂.
2. Option B:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + I_2^{2-}(aq) \][/tex]
This option suggests that calcium iodide dissociates into calcium ions and an unusual ion, I₂²⁻, which is not a common ion produced from dissociation in water. This would be a highly unlikely ionization equation.
3. Option C:
[tex]\[ CaI_2(s) + 2 H_2O(l) \rightarrow Ca(OH)_2(aq) + 2 HI(aq) \][/tex]
This option represents a chemical reaction involving water and produces calcium hydroxide and hydroiodic acid. However, this is not an ionization equation but rather a chemical reaction that leads to different products, not the simple dissociation of CaI₂ in water.
4. Option D:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{+}(aq) + I_2^{-}(aq) \][/tex]
In this option, CaI₂ is suggested to dissociate into Ca⁺ and I₂⁻, which are incorrect charges for these ions. The common ions from CaI₂ dissociation would be Ca²⁺ and I⁻.
After reviewing all the options, the correct ionization equation for calcium iodide in water is given by Option A:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + 2 I^{-}(aq) \][/tex]
This equation correctly shows the dissociation of CaI₂ into its constituent ions in aqueous solution. Therefore, the correct answer is:
Option A.
1. Option A:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + 2 I^{-}(aq) \][/tex]
In this option, solid calcium iodide dissociates into calcium ions and iodide ions when dissolved in water. This is a typical ionic dissociation process for an ionic compound like CaI₂.
2. Option B:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + I_2^{2-}(aq) \][/tex]
This option suggests that calcium iodide dissociates into calcium ions and an unusual ion, I₂²⁻, which is not a common ion produced from dissociation in water. This would be a highly unlikely ionization equation.
3. Option C:
[tex]\[ CaI_2(s) + 2 H_2O(l) \rightarrow Ca(OH)_2(aq) + 2 HI(aq) \][/tex]
This option represents a chemical reaction involving water and produces calcium hydroxide and hydroiodic acid. However, this is not an ionization equation but rather a chemical reaction that leads to different products, not the simple dissociation of CaI₂ in water.
4. Option D:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{+}(aq) + I_2^{-}(aq) \][/tex]
In this option, CaI₂ is suggested to dissociate into Ca⁺ and I₂⁻, which are incorrect charges for these ions. The common ions from CaI₂ dissociation would be Ca²⁺ and I⁻.
After reviewing all the options, the correct ionization equation for calcium iodide in water is given by Option A:
[tex]\[ CaI_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + 2 I^{-}(aq) \][/tex]
This equation correctly shows the dissociation of CaI₂ into its constituent ions in aqueous solution. Therefore, the correct answer is:
Option A.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.