Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the following system of equations:

[tex]\[ \begin{array}{l}
x + 2y = 13 \\
3x + 3y = 29
\end{array} \][/tex]


Sagot :

Sure, let's solve the system of linear equations:

[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad 3x + 3y = 29 \end{aligned} \][/tex]

We'll use the method of elimination to solve this system. Let's start by eliminating one of the variables.

First, we can simplify the second equation by dividing the entire equation by 3:

[tex]\[ 3x + 3y = 29 \implies x + y = \frac{29}{3} \][/tex]

Now our simplified system of equations looks like this:

[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad x + y = \frac{29}{3} \end{aligned} \][/tex]

Next, we will subtract the second equation from the first to eliminate [tex]\( x \)[/tex]:

[tex]\[ (x + 2y) - (x + y) = 13 - \frac{29}{3} \][/tex]

Simplify this step by step:

[tex]\[ x + 2y - x - y = 13 - \frac{29}{3} \][/tex]

[tex]\[ y = 13 - \frac{29}{3} \][/tex]

To proceed, we need a common denominator on the right-hand side. The common denominator of 13 and [tex]\(\frac{29}{3}\)[/tex] is 3, so we convert 13 to a fraction over 3:

[tex]\[ 13 = \frac{39}{3} \][/tex]

Substituting back:

[tex]\[ y = \frac{39}{3} - \frac{29}{3} = \frac{39 - 29}{3} = \frac{10}{3} \][/tex]

So, we have found [tex]\( y = \frac{10}{3} \)[/tex].

Now, substitute [tex]\( y = \frac{10}{3} \)[/tex] back into the simplified second equation [tex]\( x + y = \frac{29}{3} \)[/tex]:

[tex]\[ x + \frac{10}{3} = \frac{29}{3} \][/tex]

Subtract [tex]\(\frac{10}{3}\)[/tex] from both sides to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{29}{3} - \frac{10}{3} = \frac{29 - 10}{3} = \frac{19}{3} \][/tex]

Thus, the solutions are:

[tex]\[ \begin{aligned} x &= \frac{19}{3} \\ y &= \frac{10}{3} \end{aligned} \][/tex]

So, the solution to the system of equations is:

[tex]\[ \left( x, y \right) = \left( \frac{19}{3}, \frac{10}{3} \right) \][/tex]