Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve the system of linear equations:
[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad 3x + 3y = 29 \end{aligned} \][/tex]
We'll use the method of elimination to solve this system. Let's start by eliminating one of the variables.
First, we can simplify the second equation by dividing the entire equation by 3:
[tex]\[ 3x + 3y = 29 \implies x + y = \frac{29}{3} \][/tex]
Now our simplified system of equations looks like this:
[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad x + y = \frac{29}{3} \end{aligned} \][/tex]
Next, we will subtract the second equation from the first to eliminate [tex]\( x \)[/tex]:
[tex]\[ (x + 2y) - (x + y) = 13 - \frac{29}{3} \][/tex]
Simplify this step by step:
[tex]\[ x + 2y - x - y = 13 - \frac{29}{3} \][/tex]
[tex]\[ y = 13 - \frac{29}{3} \][/tex]
To proceed, we need a common denominator on the right-hand side. The common denominator of 13 and [tex]\(\frac{29}{3}\)[/tex] is 3, so we convert 13 to a fraction over 3:
[tex]\[ 13 = \frac{39}{3} \][/tex]
Substituting back:
[tex]\[ y = \frac{39}{3} - \frac{29}{3} = \frac{39 - 29}{3} = \frac{10}{3} \][/tex]
So, we have found [tex]\( y = \frac{10}{3} \)[/tex].
Now, substitute [tex]\( y = \frac{10}{3} \)[/tex] back into the simplified second equation [tex]\( x + y = \frac{29}{3} \)[/tex]:
[tex]\[ x + \frac{10}{3} = \frac{29}{3} \][/tex]
Subtract [tex]\(\frac{10}{3}\)[/tex] from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{29}{3} - \frac{10}{3} = \frac{29 - 10}{3} = \frac{19}{3} \][/tex]
Thus, the solutions are:
[tex]\[ \begin{aligned} x &= \frac{19}{3} \\ y &= \frac{10}{3} \end{aligned} \][/tex]
So, the solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{19}{3}, \frac{10}{3} \right) \][/tex]
[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad 3x + 3y = 29 \end{aligned} \][/tex]
We'll use the method of elimination to solve this system. Let's start by eliminating one of the variables.
First, we can simplify the second equation by dividing the entire equation by 3:
[tex]\[ 3x + 3y = 29 \implies x + y = \frac{29}{3} \][/tex]
Now our simplified system of equations looks like this:
[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad x + y = \frac{29}{3} \end{aligned} \][/tex]
Next, we will subtract the second equation from the first to eliminate [tex]\( x \)[/tex]:
[tex]\[ (x + 2y) - (x + y) = 13 - \frac{29}{3} \][/tex]
Simplify this step by step:
[tex]\[ x + 2y - x - y = 13 - \frac{29}{3} \][/tex]
[tex]\[ y = 13 - \frac{29}{3} \][/tex]
To proceed, we need a common denominator on the right-hand side. The common denominator of 13 and [tex]\(\frac{29}{3}\)[/tex] is 3, so we convert 13 to a fraction over 3:
[tex]\[ 13 = \frac{39}{3} \][/tex]
Substituting back:
[tex]\[ y = \frac{39}{3} - \frac{29}{3} = \frac{39 - 29}{3} = \frac{10}{3} \][/tex]
So, we have found [tex]\( y = \frac{10}{3} \)[/tex].
Now, substitute [tex]\( y = \frac{10}{3} \)[/tex] back into the simplified second equation [tex]\( x + y = \frac{29}{3} \)[/tex]:
[tex]\[ x + \frac{10}{3} = \frac{29}{3} \][/tex]
Subtract [tex]\(\frac{10}{3}\)[/tex] from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{29}{3} - \frac{10}{3} = \frac{29 - 10}{3} = \frac{19}{3} \][/tex]
Thus, the solutions are:
[tex]\[ \begin{aligned} x &= \frac{19}{3} \\ y &= \frac{10}{3} \end{aligned} \][/tex]
So, the solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{19}{3}, \frac{10}{3} \right) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.