At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve the following system of equations:

[tex]\[ \begin{array}{l}
x + 2y = 13 \\
3x + 3y = 29
\end{array} \][/tex]


Sagot :

Sure, let's solve the system of linear equations:

[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad 3x + 3y = 29 \end{aligned} \][/tex]

We'll use the method of elimination to solve this system. Let's start by eliminating one of the variables.

First, we can simplify the second equation by dividing the entire equation by 3:

[tex]\[ 3x + 3y = 29 \implies x + y = \frac{29}{3} \][/tex]

Now our simplified system of equations looks like this:

[tex]\[ \begin{aligned} 1. & \quad x + 2y = 13 \\ 2. & \quad x + y = \frac{29}{3} \end{aligned} \][/tex]

Next, we will subtract the second equation from the first to eliminate [tex]\( x \)[/tex]:

[tex]\[ (x + 2y) - (x + y) = 13 - \frac{29}{3} \][/tex]

Simplify this step by step:

[tex]\[ x + 2y - x - y = 13 - \frac{29}{3} \][/tex]

[tex]\[ y = 13 - \frac{29}{3} \][/tex]

To proceed, we need a common denominator on the right-hand side. The common denominator of 13 and [tex]\(\frac{29}{3}\)[/tex] is 3, so we convert 13 to a fraction over 3:

[tex]\[ 13 = \frac{39}{3} \][/tex]

Substituting back:

[tex]\[ y = \frac{39}{3} - \frac{29}{3} = \frac{39 - 29}{3} = \frac{10}{3} \][/tex]

So, we have found [tex]\( y = \frac{10}{3} \)[/tex].

Now, substitute [tex]\( y = \frac{10}{3} \)[/tex] back into the simplified second equation [tex]\( x + y = \frac{29}{3} \)[/tex]:

[tex]\[ x + \frac{10}{3} = \frac{29}{3} \][/tex]

Subtract [tex]\(\frac{10}{3}\)[/tex] from both sides to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{29}{3} - \frac{10}{3} = \frac{29 - 10}{3} = \frac{19}{3} \][/tex]

Thus, the solutions are:

[tex]\[ \begin{aligned} x &= \frac{19}{3} \\ y &= \frac{10}{3} \end{aligned} \][/tex]

So, the solution to the system of equations is:

[tex]\[ \left( x, y \right) = \left( \frac{19}{3}, \frac{10}{3} \right) \][/tex]