Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's solve the given system of equations step by step to find the correct solution.
The system of equations provided is:
[tex]\[ \begin{cases} 2x + 4y = 12 \\ y = \frac{1}{4}x - 3 \end{cases} \][/tex]
### Step 1: Substitute [tex]\( y \)[/tex] from the second equation into the first equation.
The second equation is [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
We substitute [tex]\( y \)[/tex] in the first equation [tex]\( 2x + 4y = 12 \)[/tex]:
[tex]\[ 2x + 4\left(\frac{1}{4}x - 3\right) = 12 \][/tex]
### Step 2: Simplify the substituted equation.
First, distribute the 4 inside the parentheses:
[tex]\[ 2x + 4 \cdot \left(\frac{1}{4}x\right) - 4 \cdot 3 = 12 \][/tex]
This simplifies to:
[tex]\[ 2x + x - 12 = 12 \][/tex]
Combine like terms:
[tex]\[ 3x - 12 = 12 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex].
Add 12 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x = 24 \][/tex]
Divide both sides by 3:
[tex]\[ x = 8 \][/tex]
### Step 4: Substitute [tex]\( x \)[/tex] back into the second equation to solve for [tex]\( y \)[/tex].
The second equation is [tex]\( y = \frac{1}{4}x - 3 \)[/tex]:
[tex]\[ y = \frac{1}{4} \cdot 8 - 3 \][/tex]
Simplify the right side:
[tex]\[ y = 2 - 3 \][/tex]
[tex]\[ y = -1 \][/tex]
### Conclusion
The solution to the system of equations is [tex]\( (8, -1) \)[/tex]. Thus, the correct choice among the given options is:
[tex]\[ (8, -1) \][/tex]
The system of equations provided is:
[tex]\[ \begin{cases} 2x + 4y = 12 \\ y = \frac{1}{4}x - 3 \end{cases} \][/tex]
### Step 1: Substitute [tex]\( y \)[/tex] from the second equation into the first equation.
The second equation is [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
We substitute [tex]\( y \)[/tex] in the first equation [tex]\( 2x + 4y = 12 \)[/tex]:
[tex]\[ 2x + 4\left(\frac{1}{4}x - 3\right) = 12 \][/tex]
### Step 2: Simplify the substituted equation.
First, distribute the 4 inside the parentheses:
[tex]\[ 2x + 4 \cdot \left(\frac{1}{4}x\right) - 4 \cdot 3 = 12 \][/tex]
This simplifies to:
[tex]\[ 2x + x - 12 = 12 \][/tex]
Combine like terms:
[tex]\[ 3x - 12 = 12 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex].
Add 12 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x = 24 \][/tex]
Divide both sides by 3:
[tex]\[ x = 8 \][/tex]
### Step 4: Substitute [tex]\( x \)[/tex] back into the second equation to solve for [tex]\( y \)[/tex].
The second equation is [tex]\( y = \frac{1}{4}x - 3 \)[/tex]:
[tex]\[ y = \frac{1}{4} \cdot 8 - 3 \][/tex]
Simplify the right side:
[tex]\[ y = 2 - 3 \][/tex]
[tex]\[ y = -1 \][/tex]
### Conclusion
The solution to the system of equations is [tex]\( (8, -1) \)[/tex]. Thus, the correct choice among the given options is:
[tex]\[ (8, -1) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.