At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the logarithmic inequality [tex]\(\log_3(x + 1) \leq 2\)[/tex], we will proceed step-by-step:
1. Understanding the Inequality: We need to find the values of [tex]\(x\)[/tex] such that the logarithm to base 3 of [tex]\(x + 1\)[/tex] is less than or equal to 2.
2. Rewrite the Inequality: First, we rewrite the logarithmic inequality in the exponential form.
[tex]\[ \log_3(x + 1) \leq 2 \][/tex]
Recall the property of logarithms: [tex]\(\log_b(a) = c\)[/tex] is equivalent to [tex]\(b^c = a\)[/tex]. So,
[tex]\[ \log_3(x + 1) \leq 2 \implies x + 1 \leq 3^2 \][/tex]
3. Calculate the Exponentiation:
[tex]\[ 3^2 = 9 \][/tex]
Thus,
[tex]\[ x + 1 \leq 9 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
[tex]\[ x \leq 9 - 1 \][/tex]
[tex]\[ x \leq 8 \][/tex]
5. Domain Consideration: Since the argument of a logarithm must be positive,
[tex]\[ x + 1 > 0 \][/tex]
[tex]\[ x > -1 \][/tex]
6. Combine the Results: The values of [tex]\(x\)[/tex] must satisfy both conditions:
[tex]\[ -1 < x \leq 8 \][/tex]
Therefore, the correct solution is:
[tex]\[ \boxed{-1 < x \leq 8} \][/tex]
Thus, the correct answer from the given choices is:
[tex]\[ \text{-1
1. Understanding the Inequality: We need to find the values of [tex]\(x\)[/tex] such that the logarithm to base 3 of [tex]\(x + 1\)[/tex] is less than or equal to 2.
2. Rewrite the Inequality: First, we rewrite the logarithmic inequality in the exponential form.
[tex]\[ \log_3(x + 1) \leq 2 \][/tex]
Recall the property of logarithms: [tex]\(\log_b(a) = c\)[/tex] is equivalent to [tex]\(b^c = a\)[/tex]. So,
[tex]\[ \log_3(x + 1) \leq 2 \implies x + 1 \leq 3^2 \][/tex]
3. Calculate the Exponentiation:
[tex]\[ 3^2 = 9 \][/tex]
Thus,
[tex]\[ x + 1 \leq 9 \][/tex]
4. Isolate [tex]\(x\)[/tex]:
[tex]\[ x \leq 9 - 1 \][/tex]
[tex]\[ x \leq 8 \][/tex]
5. Domain Consideration: Since the argument of a logarithm must be positive,
[tex]\[ x + 1 > 0 \][/tex]
[tex]\[ x > -1 \][/tex]
6. Combine the Results: The values of [tex]\(x\)[/tex] must satisfy both conditions:
[tex]\[ -1 < x \leq 8 \][/tex]
Therefore, the correct solution is:
[tex]\[ \boxed{-1 < x \leq 8} \][/tex]
Thus, the correct answer from the given choices is:
[tex]\[ \text{-1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.