At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve for [tex]\( x \)[/tex] in the logarithmic inequality [tex]\( \log_3(x+1) \leq 2 \)[/tex].

A. [tex]\( 1 \ \textless \ x \leq \frac{10}{3} \)[/tex]
B. [tex]\( -1 \ \textless \ x \leq 8 \)[/tex]
C. [tex]\( 1 \ \textless \ x \leq 10 \)[/tex]
D. [tex]\( -1 \ \textless \ x \leq -\frac{8}{9} \)[/tex]


Sagot :

To solve the logarithmic inequality [tex]\(\log_3(x + 1) \leq 2\)[/tex], we will proceed step-by-step:

1. Understanding the Inequality: We need to find the values of [tex]\(x\)[/tex] such that the logarithm to base 3 of [tex]\(x + 1\)[/tex] is less than or equal to 2.

2. Rewrite the Inequality: First, we rewrite the logarithmic inequality in the exponential form.
[tex]\[ \log_3(x + 1) \leq 2 \][/tex]
Recall the property of logarithms: [tex]\(\log_b(a) = c\)[/tex] is equivalent to [tex]\(b^c = a\)[/tex]. So,
[tex]\[ \log_3(x + 1) \leq 2 \implies x + 1 \leq 3^2 \][/tex]

3. Calculate the Exponentiation:
[tex]\[ 3^2 = 9 \][/tex]
Thus,
[tex]\[ x + 1 \leq 9 \][/tex]

4. Isolate [tex]\(x\)[/tex]:
[tex]\[ x \leq 9 - 1 \][/tex]
[tex]\[ x \leq 8 \][/tex]

5. Domain Consideration: Since the argument of a logarithm must be positive,
[tex]\[ x + 1 > 0 \][/tex]
[tex]\[ x > -1 \][/tex]

6. Combine the Results: The values of [tex]\(x\)[/tex] must satisfy both conditions:
[tex]\[ -1 < x \leq 8 \][/tex]

Therefore, the correct solution is:
[tex]\[ \boxed{-1 < x \leq 8} \][/tex]

Thus, the correct answer from the given choices is:
[tex]\[ \text{-1