Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line perpendicular to [tex]\( y = -\frac{1}{2}x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex], follow these steps:
1. Identify the slope of the given line: The given line is in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m = -\frac{1}{2} \)[/tex].
2. Find the slope of the perpendicular line: For a line to be perpendicular to another, its slope must be the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{1}{2} \)[/tex] is 2.
Therefore, the slope of the perpendicular line is [tex]\( m = 2 \)[/tex].
3. Use the slope-intercept form equation [tex]\( y = mx + b \)[/tex]: We now have the slope [tex]\( m = 2 \)[/tex] and need to find the y-intercept [tex]\( b \)[/tex]. We will use the point [tex]\( (2, 7) \)[/tex] which the line passes through.
4. Substitute the point into the equation: Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex] into the slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 2(2) + b \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 4 + b \][/tex]
[tex]\[ b = 3 \][/tex]
6. Write the equation of the line: Now that we have the slope [tex]\( m = 2 \)[/tex] and the y-intercept [tex]\( b = 3 \)[/tex], the equation of the line is:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]
1. Identify the slope of the given line: The given line is in slope-intercept form [tex]\( y = mx + b \)[/tex]. Here, [tex]\( m = -\frac{1}{2} \)[/tex].
2. Find the slope of the perpendicular line: For a line to be perpendicular to another, its slope must be the negative reciprocal of the original slope. The negative reciprocal of [tex]\( -\frac{1}{2} \)[/tex] is 2.
Therefore, the slope of the perpendicular line is [tex]\( m = 2 \)[/tex].
3. Use the slope-intercept form equation [tex]\( y = mx + b \)[/tex]: We now have the slope [tex]\( m = 2 \)[/tex] and need to find the y-intercept [tex]\( b \)[/tex]. We will use the point [tex]\( (2, 7) \)[/tex] which the line passes through.
4. Substitute the point into the equation: Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 7 \)[/tex] into the slope-intercept form equation to solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 2(2) + b \][/tex]
5. Solve for [tex]\( b \)[/tex]:
[tex]\[ 7 = 4 + b \][/tex]
[tex]\[ b = 3 \][/tex]
6. Write the equation of the line: Now that we have the slope [tex]\( m = 2 \)[/tex] and the y-intercept [tex]\( b = 3 \)[/tex], the equation of the line is:
[tex]\[ y = 2x + 3 \][/tex]
Therefore, the equation of the line perpendicular to [tex]\( y = -\frac{1}{2} x - 5 \)[/tex] that passes through the point [tex]\( (2, 7) \)[/tex] is:
[tex]\[ y = 2x + 3 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.