Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What are the zeros of the function below? Check all that apply.

[tex]F(x)=\frac{(x-1)(x+1)}{6(x-4)(x+7)}[/tex]

A. 4
B. -1
C. 1
D. 6
E. -7
F. 7


Sagot :

To determine the zeros of the function [tex]\( F(x) = \frac{(x-1)(x+1)}{6(x-4)(x+7)} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] at which the function equals zero.

A function [tex]\( F(x) \)[/tex] is zero when its numerator is zero, provided that the denominator is not also zero at the same points.

The numerator of [tex]\( F(x) \)[/tex] is:
[tex]\[ (x-1)(x+1) \][/tex]

To find the zeros of this function, we need to solve the equation:
[tex]\[ (x-1)(x+1) = 0 \][/tex]

We can solve this by setting each factor equal to zero:
[tex]\[ x - 1 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]

Solving these equations separately:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
[tex]\[ x + 1 = 0 \implies x = -1 \][/tex]

Thus, the zeros of the function [tex]\( F(x) \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].

Therefore, checking the given answers:
- A. 4: This is not a zero.
- B. -1: This is a zero.
- C. 1: This is a zero.
- D. 6: This is not a zero.
- E. -7: This is not a zero.
- F. 7: This is not a zero.

So, the correct answers are:
B. -1 and C. 1