Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the coordinates of the terminal point for the angle [tex]\( t = \frac{10 \pi}{3} \)[/tex], we can proceed with a step-by-step approach:
1. Normalize the Angle:
The angle given is [tex]\( \frac{10 \pi}{3} \)[/tex], which is greater than [tex]\( 2\pi \)[/tex]. To determine the equivalent angle within one full circle (between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex]), we need to reduce this angle by subtracting multiples of [tex]\(2\pi\)[/tex].
[tex]\[ \frac{10\pi}{3} \mod 2\pi = \frac{10\pi}{3} - 2\pi \left\lfloor \frac{\frac{10\pi}{3}}{2\pi} \right\rfloor \][/tex]
First, we calculate the integer part of [tex]\( \frac{\frac{10\pi}{3}}{2\pi} \)[/tex]:
[tex]\[ \frac{10\pi}{3} \div 2\pi = \frac{10\pi}{3} \cdot \frac{1}{2\pi} = \frac{10}{6} = \frac{5}{3} \approx 1.6667 \][/tex]
So, the integer part is [tex]\(1\)[/tex]. Now we subtract this from the original angle:
[tex]\[ \frac{10\pi}{3} - 2\pi \times 1 = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
2. Calculate Coordinates:
The reduced angle is [tex]\( \frac{4\pi}{3} \)[/tex], and now, we need to find the [tex]\((x, y)\)[/tex] coordinates on the unit circle for this angle. The unit circle coordinates for any angle [tex]\( t \)[/tex] are given by:
[tex]\[ x = \cos(t) \][/tex]
[tex]\[ y = \sin(t) \][/tex]
For [tex]\( t = \frac{4\pi}{3} \)[/tex]:
[tex]\[ \cos(\frac{4\pi}{3}) \approx -0.5 \][/tex]
[tex]\[ \sin(\frac{4\pi}{3}) \approx -\frac{\sqrt{3}}{2} \][/tex]
Therefore, the coordinates of the terminal point for [tex]\( t = \frac{10 \pi}{3} \)[/tex] are:
[tex]\[ \left(-0.5, -\frac{\sqrt{3}}{2}\right) \][/tex]
3. Conclusion:
The coordinates of the terminal point are [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex], which corresponds to option
[tex]\[ \boxed{\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)} \][/tex]
1. Normalize the Angle:
The angle given is [tex]\( \frac{10 \pi}{3} \)[/tex], which is greater than [tex]\( 2\pi \)[/tex]. To determine the equivalent angle within one full circle (between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex]), we need to reduce this angle by subtracting multiples of [tex]\(2\pi\)[/tex].
[tex]\[ \frac{10\pi}{3} \mod 2\pi = \frac{10\pi}{3} - 2\pi \left\lfloor \frac{\frac{10\pi}{3}}{2\pi} \right\rfloor \][/tex]
First, we calculate the integer part of [tex]\( \frac{\frac{10\pi}{3}}{2\pi} \)[/tex]:
[tex]\[ \frac{10\pi}{3} \div 2\pi = \frac{10\pi}{3} \cdot \frac{1}{2\pi} = \frac{10}{6} = \frac{5}{3} \approx 1.6667 \][/tex]
So, the integer part is [tex]\(1\)[/tex]. Now we subtract this from the original angle:
[tex]\[ \frac{10\pi}{3} - 2\pi \times 1 = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]
2. Calculate Coordinates:
The reduced angle is [tex]\( \frac{4\pi}{3} \)[/tex], and now, we need to find the [tex]\((x, y)\)[/tex] coordinates on the unit circle for this angle. The unit circle coordinates for any angle [tex]\( t \)[/tex] are given by:
[tex]\[ x = \cos(t) \][/tex]
[tex]\[ y = \sin(t) \][/tex]
For [tex]\( t = \frac{4\pi}{3} \)[/tex]:
[tex]\[ \cos(\frac{4\pi}{3}) \approx -0.5 \][/tex]
[tex]\[ \sin(\frac{4\pi}{3}) \approx -\frac{\sqrt{3}}{2} \][/tex]
Therefore, the coordinates of the terminal point for [tex]\( t = \frac{10 \pi}{3} \)[/tex] are:
[tex]\[ \left(-0.5, -\frac{\sqrt{3}}{2}\right) \][/tex]
3. Conclusion:
The coordinates of the terminal point are [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex], which corresponds to option
[tex]\[ \boxed{\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.