Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Question 29 of 44

What are the coordinates of the terminal point determined by [tex]t = \frac{10 \pi}{3}[/tex]?

A. [tex]\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)[/tex]
B. [tex]\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)[/tex]
C. [tex]\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)[/tex]
D. [tex]\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)[/tex]


Sagot :

To find the coordinates of the terminal point for the angle [tex]\( t = \frac{10 \pi}{3} \)[/tex], we can proceed with a step-by-step approach:

1. Normalize the Angle:
The angle given is [tex]\( \frac{10 \pi}{3} \)[/tex], which is greater than [tex]\( 2\pi \)[/tex]. To determine the equivalent angle within one full circle (between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex]), we need to reduce this angle by subtracting multiples of [tex]\(2\pi\)[/tex].

[tex]\[ \frac{10\pi}{3} \mod 2\pi = \frac{10\pi}{3} - 2\pi \left\lfloor \frac{\frac{10\pi}{3}}{2\pi} \right\rfloor \][/tex]

First, we calculate the integer part of [tex]\( \frac{\frac{10\pi}{3}}{2\pi} \)[/tex]:

[tex]\[ \frac{10\pi}{3} \div 2\pi = \frac{10\pi}{3} \cdot \frac{1}{2\pi} = \frac{10}{6} = \frac{5}{3} \approx 1.6667 \][/tex]

So, the integer part is [tex]\(1\)[/tex]. Now we subtract this from the original angle:

[tex]\[ \frac{10\pi}{3} - 2\pi \times 1 = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \][/tex]

2. Calculate Coordinates:
The reduced angle is [tex]\( \frac{4\pi}{3} \)[/tex], and now, we need to find the [tex]\((x, y)\)[/tex] coordinates on the unit circle for this angle. The unit circle coordinates for any angle [tex]\( t \)[/tex] are given by:

[tex]\[ x = \cos(t) \][/tex]
[tex]\[ y = \sin(t) \][/tex]

For [tex]\( t = \frac{4\pi}{3} \)[/tex]:

[tex]\[ \cos(\frac{4\pi}{3}) \approx -0.5 \][/tex]
[tex]\[ \sin(\frac{4\pi}{3}) \approx -\frac{\sqrt{3}}{2} \][/tex]

Therefore, the coordinates of the terminal point for [tex]\( t = \frac{10 \pi}{3} \)[/tex] are:

[tex]\[ \left(-0.5, -\frac{\sqrt{3}}{2}\right) \][/tex]

3. Conclusion:
The coordinates of the terminal point are [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex], which corresponds to option

[tex]\[ \boxed{\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.