Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the given problem and determine the mean, variance, and standard deviation of the final exam scores, we will go through the steps methodically.
### Step 1: Calculate the Mean
First, we need to determine the mean [tex]\(\mu\)[/tex] of the given scores. The mean is calculated by summing all the scores and then dividing by the number of scores.
Given scores: [tex]\(90, 85, 74, 91, 89, 66\)[/tex]
[tex]\[ \mu = \frac{90 + 85 + 74 + 91 + 89 + 66}{6} = \frac{495}{6} = 82.5 \][/tex]
So, the mean [tex]\(\mu\)[/tex] is 82.5.
### Step 2: Create the Table
Next, we create a table where we calculate the deviation from the mean ([tex]\(x - \mu\)[/tex]) for each score [tex]\(x\)[/tex], and then we square those deviations [tex]\((x - \mu)^2\)[/tex].
| [tex]\(x\)[/tex] | [tex]\(x - \mu\)[/tex] | [tex]\((x - \mu)^2\)[/tex] |
|-------|-------------|------------------|
| 90 | 90 - 82.5 = 7.5 | [tex]\(7.5^2 = 56.25\)[/tex] |
| 85 | 85 - 82.5 = 2.5 | [tex]\(2.5^2 = 6.25\)[/tex] |
| 74 | 74 - 82.5 = -8.5 | [tex]\((-8.5)^2 = 72.25\)[/tex] |
| 91 | 91 - 82.5 = 8.5 | [tex]\(8.5^2 = 72.25\)[/tex] |
| 89 | 89 - 82.5 = 6.5 | [tex]\(6.5^2 = 42.25\)[/tex] |
| 66 | 66 - 82.5 = -16.5| [tex]\((-16.5)^2 = 272.25\)[/tex] |
Thus, we have the following completed table:
| [tex]\(x\)[/tex] | [tex]\(x - \mu\)[/tex] | [tex]\((x - \mu)^2\)[/tex] |
|-------|-------------|------------------|
| 90 | 7.5 | 56.25 |
| 85 | 2.5 | 6.25 |
| 74 | -8.5 | 72.25 |
| 91 | 8.5 | 72.25 |
| 89 | 6.5 | 42.25 |
| 66 | -16.5 | 272.25 |
### Step 3: Calculate the Variance
The variance [tex]\(\sigma^2\)[/tex] is the average of the squared differences from the mean. Since we are treating the data as a population, the variance is calculated as:
[tex]\[ \sigma^2 = \frac{\sum{(x - \mu)^2}}{N} \][/tex]
Where [tex]\(N\)[/tex] is the number of scores.
[tex]\[ \sigma^2 = \frac{56.25 + 6.25 + 72.25 + 72.25 + 42.25 + 272.25}{6} = \frac{521.5}{6} = 86.91666666666667 \][/tex]
So, the variance [tex]\(\sigma^2\)[/tex] is approximately 86.92.
### Step 4: Calculate the Standard Deviation
The standard deviation [tex]\(\sigma\)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} = \sqrt{86.91666666666667} = 9.322910847297997 \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] is approximately 9.32.
### Summary
- Mean: 82.5
- Variance: 86.92
- Standard Deviation: 9.32
The completed table and all required calculations are presented above.
### Step 1: Calculate the Mean
First, we need to determine the mean [tex]\(\mu\)[/tex] of the given scores. The mean is calculated by summing all the scores and then dividing by the number of scores.
Given scores: [tex]\(90, 85, 74, 91, 89, 66\)[/tex]
[tex]\[ \mu = \frac{90 + 85 + 74 + 91 + 89 + 66}{6} = \frac{495}{6} = 82.5 \][/tex]
So, the mean [tex]\(\mu\)[/tex] is 82.5.
### Step 2: Create the Table
Next, we create a table where we calculate the deviation from the mean ([tex]\(x - \mu\)[/tex]) for each score [tex]\(x\)[/tex], and then we square those deviations [tex]\((x - \mu)^2\)[/tex].
| [tex]\(x\)[/tex] | [tex]\(x - \mu\)[/tex] | [tex]\((x - \mu)^2\)[/tex] |
|-------|-------------|------------------|
| 90 | 90 - 82.5 = 7.5 | [tex]\(7.5^2 = 56.25\)[/tex] |
| 85 | 85 - 82.5 = 2.5 | [tex]\(2.5^2 = 6.25\)[/tex] |
| 74 | 74 - 82.5 = -8.5 | [tex]\((-8.5)^2 = 72.25\)[/tex] |
| 91 | 91 - 82.5 = 8.5 | [tex]\(8.5^2 = 72.25\)[/tex] |
| 89 | 89 - 82.5 = 6.5 | [tex]\(6.5^2 = 42.25\)[/tex] |
| 66 | 66 - 82.5 = -16.5| [tex]\((-16.5)^2 = 272.25\)[/tex] |
Thus, we have the following completed table:
| [tex]\(x\)[/tex] | [tex]\(x - \mu\)[/tex] | [tex]\((x - \mu)^2\)[/tex] |
|-------|-------------|------------------|
| 90 | 7.5 | 56.25 |
| 85 | 2.5 | 6.25 |
| 74 | -8.5 | 72.25 |
| 91 | 8.5 | 72.25 |
| 89 | 6.5 | 42.25 |
| 66 | -16.5 | 272.25 |
### Step 3: Calculate the Variance
The variance [tex]\(\sigma^2\)[/tex] is the average of the squared differences from the mean. Since we are treating the data as a population, the variance is calculated as:
[tex]\[ \sigma^2 = \frac{\sum{(x - \mu)^2}}{N} \][/tex]
Where [tex]\(N\)[/tex] is the number of scores.
[tex]\[ \sigma^2 = \frac{56.25 + 6.25 + 72.25 + 72.25 + 42.25 + 272.25}{6} = \frac{521.5}{6} = 86.91666666666667 \][/tex]
So, the variance [tex]\(\sigma^2\)[/tex] is approximately 86.92.
### Step 4: Calculate the Standard Deviation
The standard deviation [tex]\(\sigma\)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} = \sqrt{86.91666666666667} = 9.322910847297997 \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] is approximately 9.32.
### Summary
- Mean: 82.5
- Variance: 86.92
- Standard Deviation: 9.32
The completed table and all required calculations are presented above.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.