Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
### Part 1: Calculating the Mass of Oxalic Acid Dihydrate (C₂H₂O₄•2H₂O)
1. Convert the Volume of Solution from mL to L:
Given the volume of the solution is 600.0 mL. To convert this to liters (L):
[tex]\[ \text{Volume} = \frac{600.0 \,\text{mL}}{1000} = 0.6 \,\text{L} \][/tex]
2. Determine the Moles of Oxalic Acid Needed:
The molarity of the oxalic acid solution is given as 3.500 M (moles per liter). Using the volume in liters to find the number of moles:
[tex]\[ \text{Moles of oxalic acid} = \text{Volume} \times \text{Molarity} = 0.6 \,\text{L} \times 3.500 \,\text{M} = 2.1 \,\text{moles} \][/tex]
3. Calculate the Molar Mass of Oxalic Acid Dihydrate:
- Oxalic acid (C₂H₂O₄) molar mass:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4 = 2 \times 12.01 + 2 \times 1.01 + 4 \times 16.00 = 90.04 \,\text{g/mol} \][/tex]
- Water (H₂O) molar mass:
[tex]\[ \text{Molar mass of H}_2\text{O} = 2 \times 1.01 + 16.00 = 18.02 \,\text{g/mol} \][/tex]
- Since there are two water molecules in oxalic acid dihydrate:
[tex]\[ \text{Molar mass of 2H}_2\text{O} = 2 \times 18.02 = 36.04 \,\text{g/mol} \][/tex]
- Thus, the molar mass of the full oxalic acid dihydrate (C₂H₂O₄•2H₂O) is:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4•2\text{H}_2\text{O} = 90.04 + 36.04 = 126.08 \,\text{g/mol} \][/tex]
4. Calculate the Mass of Oxalic Acid Dihydrate Required:
Using the moles of oxalic acid calculated and the molar mass of the dihydrate form:
[tex]\[ \text{Mass of oxalic acid dihydrate} = \text{Moles} \times \text{Molar mass} = 2.1 \,\text{moles} \times 126.08 \,\text{g/mol} = 264.768 \,\text{g} \][/tex]
So, you need 264.768 grams of oxalic acid dihydrate to prepare 600.0 mL of a 3.500 M oxalic acid solution.
### Part 2: Writing the Complete and Net Ionic Equations of the Neutralization Reaction Between NaOH and HCl
1. Balanced Molecular Equation:
[tex]\[ \text{NaOH}(aq) + \text{HCl}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \][/tex]
2. Complete Ionic Equation:
Separate all strong electrolytes into their ions:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
3. Net Ionic Equation:
Cancel out the spectator ions (Na[tex]\(^+\)[/tex] and Cl[tex]\(^-\)[/tex]) from the complete ionic equation since they appear on both sides:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
Thus, the complete ionic equation is:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
And the net ionic equation is:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
1. Convert the Volume of Solution from mL to L:
Given the volume of the solution is 600.0 mL. To convert this to liters (L):
[tex]\[ \text{Volume} = \frac{600.0 \,\text{mL}}{1000} = 0.6 \,\text{L} \][/tex]
2. Determine the Moles of Oxalic Acid Needed:
The molarity of the oxalic acid solution is given as 3.500 M (moles per liter). Using the volume in liters to find the number of moles:
[tex]\[ \text{Moles of oxalic acid} = \text{Volume} \times \text{Molarity} = 0.6 \,\text{L} \times 3.500 \,\text{M} = 2.1 \,\text{moles} \][/tex]
3. Calculate the Molar Mass of Oxalic Acid Dihydrate:
- Oxalic acid (C₂H₂O₄) molar mass:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4 = 2 \times 12.01 + 2 \times 1.01 + 4 \times 16.00 = 90.04 \,\text{g/mol} \][/tex]
- Water (H₂O) molar mass:
[tex]\[ \text{Molar mass of H}_2\text{O} = 2 \times 1.01 + 16.00 = 18.02 \,\text{g/mol} \][/tex]
- Since there are two water molecules in oxalic acid dihydrate:
[tex]\[ \text{Molar mass of 2H}_2\text{O} = 2 \times 18.02 = 36.04 \,\text{g/mol} \][/tex]
- Thus, the molar mass of the full oxalic acid dihydrate (C₂H₂O₄•2H₂O) is:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4•2\text{H}_2\text{O} = 90.04 + 36.04 = 126.08 \,\text{g/mol} \][/tex]
4. Calculate the Mass of Oxalic Acid Dihydrate Required:
Using the moles of oxalic acid calculated and the molar mass of the dihydrate form:
[tex]\[ \text{Mass of oxalic acid dihydrate} = \text{Moles} \times \text{Molar mass} = 2.1 \,\text{moles} \times 126.08 \,\text{g/mol} = 264.768 \,\text{g} \][/tex]
So, you need 264.768 grams of oxalic acid dihydrate to prepare 600.0 mL of a 3.500 M oxalic acid solution.
### Part 2: Writing the Complete and Net Ionic Equations of the Neutralization Reaction Between NaOH and HCl
1. Balanced Molecular Equation:
[tex]\[ \text{NaOH}(aq) + \text{HCl}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \][/tex]
2. Complete Ionic Equation:
Separate all strong electrolytes into their ions:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
3. Net Ionic Equation:
Cancel out the spectator ions (Na[tex]\(^+\)[/tex] and Cl[tex]\(^-\)[/tex]) from the complete ionic equation since they appear on both sides:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
Thus, the complete ionic equation is:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
And the net ionic equation is:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.