Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
### Part 1: Calculating the Mass of Oxalic Acid Dihydrate (C₂H₂O₄•2H₂O)
1. Convert the Volume of Solution from mL to L:
Given the volume of the solution is 600.0 mL. To convert this to liters (L):
[tex]\[ \text{Volume} = \frac{600.0 \,\text{mL}}{1000} = 0.6 \,\text{L} \][/tex]
2. Determine the Moles of Oxalic Acid Needed:
The molarity of the oxalic acid solution is given as 3.500 M (moles per liter). Using the volume in liters to find the number of moles:
[tex]\[ \text{Moles of oxalic acid} = \text{Volume} \times \text{Molarity} = 0.6 \,\text{L} \times 3.500 \,\text{M} = 2.1 \,\text{moles} \][/tex]
3. Calculate the Molar Mass of Oxalic Acid Dihydrate:
- Oxalic acid (C₂H₂O₄) molar mass:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4 = 2 \times 12.01 + 2 \times 1.01 + 4 \times 16.00 = 90.04 \,\text{g/mol} \][/tex]
- Water (H₂O) molar mass:
[tex]\[ \text{Molar mass of H}_2\text{O} = 2 \times 1.01 + 16.00 = 18.02 \,\text{g/mol} \][/tex]
- Since there are two water molecules in oxalic acid dihydrate:
[tex]\[ \text{Molar mass of 2H}_2\text{O} = 2 \times 18.02 = 36.04 \,\text{g/mol} \][/tex]
- Thus, the molar mass of the full oxalic acid dihydrate (C₂H₂O₄•2H₂O) is:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4•2\text{H}_2\text{O} = 90.04 + 36.04 = 126.08 \,\text{g/mol} \][/tex]
4. Calculate the Mass of Oxalic Acid Dihydrate Required:
Using the moles of oxalic acid calculated and the molar mass of the dihydrate form:
[tex]\[ \text{Mass of oxalic acid dihydrate} = \text{Moles} \times \text{Molar mass} = 2.1 \,\text{moles} \times 126.08 \,\text{g/mol} = 264.768 \,\text{g} \][/tex]
So, you need 264.768 grams of oxalic acid dihydrate to prepare 600.0 mL of a 3.500 M oxalic acid solution.
### Part 2: Writing the Complete and Net Ionic Equations of the Neutralization Reaction Between NaOH and HCl
1. Balanced Molecular Equation:
[tex]\[ \text{NaOH}(aq) + \text{HCl}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \][/tex]
2. Complete Ionic Equation:
Separate all strong electrolytes into their ions:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
3. Net Ionic Equation:
Cancel out the spectator ions (Na[tex]\(^+\)[/tex] and Cl[tex]\(^-\)[/tex]) from the complete ionic equation since they appear on both sides:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
Thus, the complete ionic equation is:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
And the net ionic equation is:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
1. Convert the Volume of Solution from mL to L:
Given the volume of the solution is 600.0 mL. To convert this to liters (L):
[tex]\[ \text{Volume} = \frac{600.0 \,\text{mL}}{1000} = 0.6 \,\text{L} \][/tex]
2. Determine the Moles of Oxalic Acid Needed:
The molarity of the oxalic acid solution is given as 3.500 M (moles per liter). Using the volume in liters to find the number of moles:
[tex]\[ \text{Moles of oxalic acid} = \text{Volume} \times \text{Molarity} = 0.6 \,\text{L} \times 3.500 \,\text{M} = 2.1 \,\text{moles} \][/tex]
3. Calculate the Molar Mass of Oxalic Acid Dihydrate:
- Oxalic acid (C₂H₂O₄) molar mass:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4 = 2 \times 12.01 + 2 \times 1.01 + 4 \times 16.00 = 90.04 \,\text{g/mol} \][/tex]
- Water (H₂O) molar mass:
[tex]\[ \text{Molar mass of H}_2\text{O} = 2 \times 1.01 + 16.00 = 18.02 \,\text{g/mol} \][/tex]
- Since there are two water molecules in oxalic acid dihydrate:
[tex]\[ \text{Molar mass of 2H}_2\text{O} = 2 \times 18.02 = 36.04 \,\text{g/mol} \][/tex]
- Thus, the molar mass of the full oxalic acid dihydrate (C₂H₂O₄•2H₂O) is:
[tex]\[ \text{Molar mass of C}_2\text{H}_2\text{O}_4•2\text{H}_2\text{O} = 90.04 + 36.04 = 126.08 \,\text{g/mol} \][/tex]
4. Calculate the Mass of Oxalic Acid Dihydrate Required:
Using the moles of oxalic acid calculated and the molar mass of the dihydrate form:
[tex]\[ \text{Mass of oxalic acid dihydrate} = \text{Moles} \times \text{Molar mass} = 2.1 \,\text{moles} \times 126.08 \,\text{g/mol} = 264.768 \,\text{g} \][/tex]
So, you need 264.768 grams of oxalic acid dihydrate to prepare 600.0 mL of a 3.500 M oxalic acid solution.
### Part 2: Writing the Complete and Net Ionic Equations of the Neutralization Reaction Between NaOH and HCl
1. Balanced Molecular Equation:
[tex]\[ \text{NaOH}(aq) + \text{HCl}(aq) \rightarrow \text{NaCl}(aq) + \text{H}_2\text{O}(l) \][/tex]
2. Complete Ionic Equation:
Separate all strong electrolytes into their ions:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
3. Net Ionic Equation:
Cancel out the spectator ions (Na[tex]\(^+\)[/tex] and Cl[tex]\(^-\)[/tex]) from the complete ionic equation since they appear on both sides:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
Thus, the complete ionic equation is:
[tex]\[ \text{Na}^+(aq) + \text{OH}^-(aq) + \text{H}^+(aq) + \text{Cl}^-(aq) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \][/tex]
And the net ionic equation is:
[tex]\[ \text{OH}^-(aq) + \text{H}^+(aq) \rightarrow \text{H}_2\text{O}(l) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.