Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Absolutely, let's go through the detailed steps for solving this problem:
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.