Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Absolutely, let's go through the detailed steps for solving this problem:
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.