Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Absolutely, let's go through the detailed steps for solving this problem:
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
1. Identify the given data:
- Mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 100 \)[/tex] grams.
- Molar mass of methane ([tex]\( \text{CH}_4 \)[/tex]): [tex]\( 16.04 \)[/tex] grams/mole.
- Molar mass of oxygen ([tex]\( \text{O}_2 \)[/tex]): [tex]\( 32.00 \)[/tex] grams/mole.
- Avogadro's number: [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mole.
2. Calculate the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) from the given mass:
- The formula to find the number of moles is:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
- For methane:
[tex]\[ \text{moles of } \text{CH}_4 = \frac{100 \text{ g}}{16.04 \text{ g/mol}} \approx 6.234 \][/tex]
Therefore, the moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is approximately [tex]\( 6.234 \)[/tex].
3. Determine the moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required for the reaction:
- From the stoichiometry of the balanced chemical equation, 1 mole of [tex]\( \text{CH}_4 \)[/tex] reacts with 2 moles of [tex]\( \text{O}_2 \)[/tex]. Hence, the moles of oxygen required is twice the moles of methane.
[tex]\[ \text{moles of } \text{O}_2 = 2 \times \text{moles of } \text{CH}_4 \][/tex]
- Using the calculated moles of methane:
[tex]\[ \text{moles of } \text{O}_2 = 2 \times 6.234 = 12.468 \][/tex]
4. Calculate the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed:
- Utilizing Avogadro's number [tex]\( (6.022 \times 10^{23} \, \text{molecules/mole}) \)[/tex], the number of molecules can be found by:
[tex]\[ \text{molecules of } \text{O}_2 = \text{moles of } \text{O}_2 \times \text{Avogadro's number} \][/tex]
- For the calculated moles of oxygen:
[tex]\[ \text{molecules of } \text{O}_2 = 12.468 \times 6.022 \times 10^{23} \approx 7.509 \times 10^{24} \][/tex]
Therefore, the number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed in the combustion of [tex]\( 100 \,\text{g} \)[/tex] of methane is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
To sum up,
- The moles of methane ([tex]\( \text{CH}_4 \)[/tex]) is [tex]\( 6.234 \)[/tex].
- The moles of oxygen ([tex]\( \text{O}_2 \)[/tex]) required is [tex]\( 12.468 \)[/tex].
- The number of molecules of oxygen ([tex]\( \text{O}_2 \)[/tex]) consumed is approximately [tex]\( 7.509 \times 10^{24} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.