Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the problem step-by-step.
We are given:
- The initial height [tex]\( h_0 = 2 \)[/tex] feet.
- The initial velocity [tex]\( V_0 = 130 \)[/tex] feet per second.
The general equation for the projectile's height [tex]\( h(t) \)[/tex] as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ h(t) = -16t^2 + V_0 t + h_0 \][/tex]
We need to substitute the given values of [tex]\( V_0 \)[/tex] and [tex]\( h_0 \)[/tex] into this equation.
Step 1: Substitute [tex]\( V_0 = 130 \)[/tex] into the equation.
[tex]\[ h(t) = -16t^2 + 130t + h_0 \][/tex]
Step 2: Substitute [tex]\( h_0 = 2 \)[/tex] into the equation.
[tex]\[ h(t) = -16t^2 + 130t + 2 \][/tex]
So the equation that models the ball's height as a function of time is:
[tex]\[ h(t) = -16t^2 + 130t + 2 \][/tex]
Now, let's match this with the given options:
A. [tex]\( h(t) = -16t^2 + 2t + 130 \)[/tex]
- This equation incorrectly places the initial height and the initial velocity coefficients in the wrong order.
B. [tex]\( h(t) = -16t^2 - 130t + 2 \)[/tex]
- This equation incorrectly has a negative initial velocity term [tex]\( -130t \)[/tex].
C. [tex]\( h(t) = -16t^2 + 130t + 2 \)[/tex]
- This equation is correct and matches our derived equation.
D. [tex]\( h(t) = -16t^2 - 2t + 130 \)[/tex]
- This equation incorrectly places the initial height and the initial velocity coefficients in the wrong order and signs.
Therefore, the correct equation is:
[tex]\[ c. h(t) = -16t^2 + 130t + 2 \][/tex]
We are given:
- The initial height [tex]\( h_0 = 2 \)[/tex] feet.
- The initial velocity [tex]\( V_0 = 130 \)[/tex] feet per second.
The general equation for the projectile's height [tex]\( h(t) \)[/tex] as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ h(t) = -16t^2 + V_0 t + h_0 \][/tex]
We need to substitute the given values of [tex]\( V_0 \)[/tex] and [tex]\( h_0 \)[/tex] into this equation.
Step 1: Substitute [tex]\( V_0 = 130 \)[/tex] into the equation.
[tex]\[ h(t) = -16t^2 + 130t + h_0 \][/tex]
Step 2: Substitute [tex]\( h_0 = 2 \)[/tex] into the equation.
[tex]\[ h(t) = -16t^2 + 130t + 2 \][/tex]
So the equation that models the ball's height as a function of time is:
[tex]\[ h(t) = -16t^2 + 130t + 2 \][/tex]
Now, let's match this with the given options:
A. [tex]\( h(t) = -16t^2 + 2t + 130 \)[/tex]
- This equation incorrectly places the initial height and the initial velocity coefficients in the wrong order.
B. [tex]\( h(t) = -16t^2 - 130t + 2 \)[/tex]
- This equation incorrectly has a negative initial velocity term [tex]\( -130t \)[/tex].
C. [tex]\( h(t) = -16t^2 + 130t + 2 \)[/tex]
- This equation is correct and matches our derived equation.
D. [tex]\( h(t) = -16t^2 - 2t + 130 \)[/tex]
- This equation incorrectly places the initial height and the initial velocity coefficients in the wrong order and signs.
Therefore, the correct equation is:
[tex]\[ c. h(t) = -16t^2 + 130t + 2 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.