Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

On a piece of paper, graph [tex]y = x^2 - 7x + 10[/tex] and identify the [tex]y[/tex]-intercept. Then determine which answer choice matches the graph you drew and correctly identifies the [tex]y[/tex]-intercept.

Sagot :

To identify the [tex]\( y \)[/tex]-intercept of the quadratic equation [tex]\( y = x^2 - 7x + 10 \)[/tex], follow these steps:

1. Definition of [tex]\( y \)[/tex]-intercept: The [tex]\( y \)[/tex]-intercept of an equation is the point where the graph crosses the [tex]\( y \)[/tex]-axis. This occurs when [tex]\( x = 0 \)[/tex].

2. Substitute [tex]\( x = 0 \)[/tex] into the equation: To find the [tex]\( y \)[/tex]-intercept, substitute [tex]\( x = 0 \)[/tex] into the given equation.
[tex]\[ y = (0)^2 - 7(0) + 10 \][/tex]

3. Calculate the result:
[tex]\[ y = 0 - 0 + 10 = 10 \][/tex]

4. Identify the [tex]\( y \)[/tex]-intercept: Therefore, the [tex]\( y \)[/tex]-intercept of the equation [tex]\( y = x^2 - 7x + 10 \)[/tex] is [tex]\( 10 \)[/tex]. This means the graph crosses the [tex]\( y \)[/tex]-axis at the point [tex]\( (0, 10) \)[/tex].

Next, let's graph the equation and match it with the correct answer choice. Here are the steps to graph a quadratic function:

1. Standard Form: The equation [tex]\( y = x^2 - 7x + 10 \)[/tex] is already in standard form [tex]\( y = ax^2 + bx + c \)[/tex].

2. [tex]\( y \)[/tex]-intercept: We already calculated the [tex]\( y \)[/tex]-intercept to be [tex]\( 10 \)[/tex], so the graph will cross the [tex]\( y \)[/tex]-axis at [tex]\( (0, 10) \)[/tex].

3. Find the vertex: The vertex of a quadratic equation in standard form can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex]. For the equation [tex]\( y = x^2 - 7x + 10 \)[/tex]:
[tex]\[ a = 1, \quad b = -7 \][/tex]
[tex]\[ x = -\frac{-7}{2 \times 1} = \frac{7}{2} = 3.5 \][/tex]

4. Substitute the [tex]\( x \)[/tex]-value of the vertex back into the equation to find the [tex]\( y \)[/tex]-coordinate of the vertex:
[tex]\[ y = (3.5)^2 - 7(3.5) + 10 \][/tex]
[tex]\[ y = 12.25 - 24.5 + 10 = -2.25 \][/tex]
So, the vertex is [tex]\( (3.5, -2.25) \)[/tex].

5. Plot more points: Calculate additional points by substituting other values for [tex]\( x \)[/tex] to get corresponding [tex]\( y \)[/tex]-values.

6. Graph the quadratic curve: Using the vertex and the other calculated points, draw the parabola opening upwards since [tex]\( a > 0 \)[/tex].

After plotting, you should verify that the [tex]\( y \)[/tex]-intercept is indeed [tex]\( 10 \)[/tex].

Answer Choice: After graphing the equation, you would match your graph with the given answer choices. The correct answer choice should reflect that the [tex]\( y \)[/tex]-intercept is [tex]\( 10 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.