Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the work done when carrying a book weighing 2.0 newtons at a constant velocity over a horizontal distance of 26 meters, we need to consider the definition of work in physics.
Work is calculated using the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(\theta) \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle between the force applied and the direction of motion.
When carrying a book horizontally at constant velocity:
1. The weight of the book acts vertically downward due to gravity.
2. The movement is horizontal.
3. The angle [tex]\(\theta\)[/tex] between the direction of the weight (force due to gravity) and the direction of the motion (horizontal) is 90 degrees.
The cosine of 90 degrees ([tex]\(\cos(90^\circ)\)[/tex]) is 0.
Substituting into the formula, we get:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(90^\circ) \][/tex]
[tex]\[ \text{Work} = 2.0 \, \text{N} \times 26 \, \text{m} \times 0 \][/tex]
[tex]\[ \text{Work} = 0 \, \text{J} \][/tex]
Therefore, the work done is:
[tex]\[ 0.0 \, \text{J} \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{0.0 \, \text{J}} \][/tex]
Work is calculated using the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(\theta) \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle between the force applied and the direction of motion.
When carrying a book horizontally at constant velocity:
1. The weight of the book acts vertically downward due to gravity.
2. The movement is horizontal.
3. The angle [tex]\(\theta\)[/tex] between the direction of the weight (force due to gravity) and the direction of the motion (horizontal) is 90 degrees.
The cosine of 90 degrees ([tex]\(\cos(90^\circ)\)[/tex]) is 0.
Substituting into the formula, we get:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(90^\circ) \][/tex]
[tex]\[ \text{Work} = 2.0 \, \text{N} \times 26 \, \text{m} \times 0 \][/tex]
[tex]\[ \text{Work} = 0 \, \text{J} \][/tex]
Therefore, the work done is:
[tex]\[ 0.0 \, \text{J} \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{0.0 \, \text{J}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.