At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the work done when carrying a book weighing 2.0 newtons at a constant velocity over a horizontal distance of 26 meters, we need to consider the definition of work in physics.
Work is calculated using the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(\theta) \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle between the force applied and the direction of motion.
When carrying a book horizontally at constant velocity:
1. The weight of the book acts vertically downward due to gravity.
2. The movement is horizontal.
3. The angle [tex]\(\theta\)[/tex] between the direction of the weight (force due to gravity) and the direction of the motion (horizontal) is 90 degrees.
The cosine of 90 degrees ([tex]\(\cos(90^\circ)\)[/tex]) is 0.
Substituting into the formula, we get:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(90^\circ) \][/tex]
[tex]\[ \text{Work} = 2.0 \, \text{N} \times 26 \, \text{m} \times 0 \][/tex]
[tex]\[ \text{Work} = 0 \, \text{J} \][/tex]
Therefore, the work done is:
[tex]\[ 0.0 \, \text{J} \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{0.0 \, \text{J}} \][/tex]
Work is calculated using the formula:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(\theta) \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle between the force applied and the direction of motion.
When carrying a book horizontally at constant velocity:
1. The weight of the book acts vertically downward due to gravity.
2. The movement is horizontal.
3. The angle [tex]\(\theta\)[/tex] between the direction of the weight (force due to gravity) and the direction of the motion (horizontal) is 90 degrees.
The cosine of 90 degrees ([tex]\(\cos(90^\circ)\)[/tex]) is 0.
Substituting into the formula, we get:
[tex]\[ \text{Work} = \text{Force} \times \text{Distance} \times \cos(90^\circ) \][/tex]
[tex]\[ \text{Work} = 2.0 \, \text{N} \times 26 \, \text{m} \times 0 \][/tex]
[tex]\[ \text{Work} = 0 \, \text{J} \][/tex]
Therefore, the work done is:
[tex]\[ 0.0 \, \text{J} \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{0.0 \, \text{J}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.