Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step-by-step.
We need to identify the correct equation that relates kinetic energy ([tex]\( KE \)[/tex]), mass ([tex]\( m \)[/tex]), and velocity ([tex]\( v \)[/tex]).
The formula for kinetic energy is derived from the principles of physics, specifically from the work-energy theorem. For an object with mass [tex]\( m \)[/tex] moving with velocity [tex]\( v \)[/tex], the kinetic energy is mathematically given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Let's analyze the given options:
A. [tex]\( KE = \frac{1}{2} m^2 v \)[/tex]
Here, the mass [tex]\( m \)[/tex] is squared and the velocity [tex]\( v \)[/tex] is to the first power. This form is incorrect because kinetic energy does not involve mass squared, and velocity should be squared.
B. [tex]\( KE = \frac{1}{2} m v^2 \)[/tex]
This matches our earlier stated formula for kinetic energy. The mass [tex]\( m \)[/tex] and the square of velocity [tex]\( v \)[/tex] are correctly included. Therefore, this looks like the correct option.
C. [tex]\( KE = \frac{1}{2} m v \)[/tex]
In this option, both mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] are to the first power. This does not correctly represent kinetic energy because velocity should be squared, not to the first power.
D. [tex]\( KE = \frac{1}{2} m v^3 \)[/tex]
Here, the velocity [tex]\( v \)[/tex] is cubed. This is incorrect because kinetic energy involves the square of velocity, not the cube.
After reviewing all choices, the correct relationship is:
[tex]\[ \boxed{KE = \frac{1}{2} m v^2} \][/tex]
Therefore, the correct answer is:
B. [tex]\( KE = \frac{1}{2} m v^2 \)[/tex]
We need to identify the correct equation that relates kinetic energy ([tex]\( KE \)[/tex]), mass ([tex]\( m \)[/tex]), and velocity ([tex]\( v \)[/tex]).
The formula for kinetic energy is derived from the principles of physics, specifically from the work-energy theorem. For an object with mass [tex]\( m \)[/tex] moving with velocity [tex]\( v \)[/tex], the kinetic energy is mathematically given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Let's analyze the given options:
A. [tex]\( KE = \frac{1}{2} m^2 v \)[/tex]
Here, the mass [tex]\( m \)[/tex] is squared and the velocity [tex]\( v \)[/tex] is to the first power. This form is incorrect because kinetic energy does not involve mass squared, and velocity should be squared.
B. [tex]\( KE = \frac{1}{2} m v^2 \)[/tex]
This matches our earlier stated formula for kinetic energy. The mass [tex]\( m \)[/tex] and the square of velocity [tex]\( v \)[/tex] are correctly included. Therefore, this looks like the correct option.
C. [tex]\( KE = \frac{1}{2} m v \)[/tex]
In this option, both mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] are to the first power. This does not correctly represent kinetic energy because velocity should be squared, not to the first power.
D. [tex]\( KE = \frac{1}{2} m v^3 \)[/tex]
Here, the velocity [tex]\( v \)[/tex] is cubed. This is incorrect because kinetic energy involves the square of velocity, not the cube.
After reviewing all choices, the correct relationship is:
[tex]\[ \boxed{KE = \frac{1}{2} m v^2} \][/tex]
Therefore, the correct answer is:
B. [tex]\( KE = \frac{1}{2} m v^2 \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.