Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of finding the overall equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex], follow these steps:
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.