Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of finding the overall equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex], follow these steps:
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.