Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the overall equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex], follow these steps:
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
### Step-by-Step Solution:
Given Chemical Equations:
1. [tex]\( \text{C} (s) + 2 \text{H}_2 (g) \rightarrow \text{CH}_4 (g) \)[/tex]
2. [tex]\( \text{C} (s) + 2 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) \)[/tex]
3. [tex]\( \text{H}_2 (g) + \text{Cl}_2 (g) \rightarrow 2 \text{HCl} (g) \)[/tex]
We need to derive an overall balanced equation that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{Cl}_2 \)[/tex].
### Step 1: Writing the Target Reaction
Let's consider the desired reaction:
[tex]\[ \text{CH}_4 (g) + \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + \text{HCl} (g) \][/tex]
### Step 2: Balancing the Equation
In this reaction, we need both carbon and chlorine atoms to balance out on both sides, and we should also ensure the hydrogen atoms are equally balanced.
- Carbon Balance: One C atom on both sides (from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text{CCl}_4 \)[/tex]).
- Chlorine Balance: Start with 4 chlorine atoms from [tex]\( \text{Cl}_2 \)[/tex] to match the [tex]\( \text{CCl}_4 \)[/tex] on the product side.
- Hydrogen Balance: [tex]\( \text{CH}_4 \)[/tex] has 4 hydrogen atoms, which will form 4 molecules of [tex]\( \text{HCl} \)[/tex] since each [tex]\( \text{HCl} \)[/tex] contains 1 hydrogen atom.
### Step 3: Adjusting Coefficients
The equation must be balanced such that the number of each type of atom on the reactants side equals the number of those atoms on the products side.
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
- Carbon atoms: 1 on both sides.
- Hydrogen atoms: 4 on both sides.
- Chlorine atoms: 8 on both sides (each [tex]\( \text{Cl}_2 \)[/tex] provides 2 atoms, so 4 [tex]\( \text{Cl}_2 \)[/tex] contribute 8 chlorine atoms, which are distributed as 4 in [tex]\( \text{CCl}_4 \)[/tex] and 4 in [tex]\( \text{HCl} \)[/tex]).
### Conclusion:
The overall balanced equation for the reaction that produces [tex]\( \text{CCl}_4 \)[/tex] and [tex]\( \text{HCl} \)[/tex] from [tex]\( \text{CH}_4 \)[/tex] and [tex]\( \text {Cl}_2 \)[/tex] is:
[tex]\[ \text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g) \][/tex]
So, the balanced chemical equation is:
[tex]\[ \boxed{\text{CH}_4 (g) + 4 \text{Cl}_2 (g) \rightarrow \text{CCl}_4 (g) + 4 \text{HCl} (g)} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.