Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the enthalpy of the overall reaction
[tex]\[ C(s) + H_2O(g) \rightarrow CO(g) + H_2(g), \][/tex]
we need to manipulate the given intermediate equations in such a way that they sum up to the overall reaction.
Intermediate Equations and Steps:
1. First Equation:
[tex]\[ C(s) + O_2(g) \rightarrow CO_2(g), \quad \Delta H_1 = -393.5 \text{ kJ} \][/tex]
To use this equation in the overall reaction, we need to reverse it to produce [tex]\( C(s) \)[/tex] and [tex]\( O_2(g) \)[/tex] from [tex]\( CO_2(g) \)[/tex]:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \][/tex]
Reversing the equation changes the sign of [tex]\(\Delta H_1\)[/tex]:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
2. Second Equation:
[tex]\[ 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g), \quad \Delta H_2 = -566.0 \text{ kJ} \][/tex]
We need to produce [tex]\( CO(g) \)[/tex] on the product side, so let's halve the equation first:
[tex]\[ CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \][/tex]
Halving the equation also halves the enthalpy change:
[tex]\[ \Delta H_2 = \frac{-566.0}{2} = -283.0 \text{ kJ} \][/tex]
3. Third Equation:
[tex]\[ 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g), \quad \Delta H_3 = 483.6 \text{ kJ} \][/tex]
To balance the overall reaction, we also need to halve this equation:
[tex]\[ H_2O(g) \rightarrow H_2(g) + \frac{1}{2} O_2(g) \][/tex]
Halving this equation halves the enthalpy change:
[tex]\[ \Delta H_3 = \frac{483.6}{2} = 241.8 \text{ kJ} \][/tex]
Next, Sum up the modified enthalpies to get the overall reaction enthalpy.
Modified enthalpies:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
[tex]\[ \Delta H_2 = -283.0 \text{ kJ} \][/tex]
[tex]\[ \Delta H_3 = 241.8 \text{ kJ} \][/tex]
Now, summing these values:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + \Delta H_2 + \Delta H_3 = 393.5 \text{ kJ} - 283.0 \text{ kJ} + 241.8 \text{ kJ} = 352.3 \text{ kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction is:
[tex]\[ \Delta H_{\text{xn}} = 352.3 \text{ kJ} \][/tex]
Necessary Steps to Calculate:
- The first equation must be reversed.
- The second equation must be halved.
- The third equation must be halved.
These are the steps required to determine the overall enthalpy change.
[tex]\[ C(s) + H_2O(g) \rightarrow CO(g) + H_2(g), \][/tex]
we need to manipulate the given intermediate equations in such a way that they sum up to the overall reaction.
Intermediate Equations and Steps:
1. First Equation:
[tex]\[ C(s) + O_2(g) \rightarrow CO_2(g), \quad \Delta H_1 = -393.5 \text{ kJ} \][/tex]
To use this equation in the overall reaction, we need to reverse it to produce [tex]\( C(s) \)[/tex] and [tex]\( O_2(g) \)[/tex] from [tex]\( CO_2(g) \)[/tex]:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \][/tex]
Reversing the equation changes the sign of [tex]\(\Delta H_1\)[/tex]:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
2. Second Equation:
[tex]\[ 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g), \quad \Delta H_2 = -566.0 \text{ kJ} \][/tex]
We need to produce [tex]\( CO(g) \)[/tex] on the product side, so let's halve the equation first:
[tex]\[ CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \][/tex]
Halving the equation also halves the enthalpy change:
[tex]\[ \Delta H_2 = \frac{-566.0}{2} = -283.0 \text{ kJ} \][/tex]
3. Third Equation:
[tex]\[ 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g), \quad \Delta H_3 = 483.6 \text{ kJ} \][/tex]
To balance the overall reaction, we also need to halve this equation:
[tex]\[ H_2O(g) \rightarrow H_2(g) + \frac{1}{2} O_2(g) \][/tex]
Halving this equation halves the enthalpy change:
[tex]\[ \Delta H_3 = \frac{483.6}{2} = 241.8 \text{ kJ} \][/tex]
Next, Sum up the modified enthalpies to get the overall reaction enthalpy.
Modified enthalpies:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
[tex]\[ \Delta H_2 = -283.0 \text{ kJ} \][/tex]
[tex]\[ \Delta H_3 = 241.8 \text{ kJ} \][/tex]
Now, summing these values:
[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + \Delta H_2 + \Delta H_3 = 393.5 \text{ kJ} - 283.0 \text{ kJ} + 241.8 \text{ kJ} = 352.3 \text{ kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction is:
[tex]\[ \Delta H_{\text{xn}} = 352.3 \text{ kJ} \][/tex]
Necessary Steps to Calculate:
- The first equation must be reversed.
- The second equation must be halved.
- The third equation must be halved.
These are the steps required to determine the overall enthalpy change.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.