Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Consider the following intermediate chemical equations:

[tex]\[
\begin{array}{ll}
CH_4(g) \rightarrow C(s) + 2H_2(g) & \Delta H_1 = 74.6 \, \text{kJ} \\
CCl_4(g) \rightarrow C(s) + 2Cl_2(g) & \Delta H_2 = 95.7 \, \text{kJ} \\
H_2(g) + Cl_2(g) \rightarrow 2HCl(g) & \Delta H_3 = -92.3 \, \text{kJ}
\end{array}
\][/tex]

What is the enthalpy of the overall chemical reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex]?

A. [tex]\(-205.7 \, \text{kJ}\)[/tex]
B. [tex]\(-113.4 \, \text{kJ}\)[/tex]
C. [tex]\(-14.3 \, \text{kJ}\)[/tex]
D. [tex]\(78.0 \, \text{kJ}\)[/tex]


Sagot :

To determine the enthalpy change for the overall chemical reaction given by
[tex]\[ \text{CH}_4(g) + 4 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g) + 4 \text{HCl}(g), \][/tex]
we will need to manipulate the given intermediate reactions and their enthalpies. Here are the provided intermediate reactions with their respective enthalpy changes:

1. [tex]\[ \text{CH}_4(g) \rightarrow \text{C}(s) + 2 \text{H}_2(g) \quad \Delta H_1 = 74.6 \text{ kJ} \][/tex]
2. [tex]\[ \text{CCl}_4(g) \rightarrow \text{C}(s) + 2 \text{Cl}_2(g) \quad \Delta H_2 = 95.7 \text{ kJ} \][/tex]
3. [tex]\[ \text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g) \quad \Delta H_3 = -92.3 \text{ kJ} \][/tex]

First, we reverse the first reaction to get:
[tex]\[ \text{C}(s) + 2 \text{H}_2(g) \rightarrow \text{CH}_4(g) \][/tex]
Reversing a reaction flips the sign of the enthalpy change:
[tex]\[ \Delta H_1' = -74.6 \text{ kJ} \][/tex]

Next, we reverse the second reaction:
[tex]\[ \text{C}(s) + 2 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g) \][/tex]
Reversing this reaction also flips the sign of the enthalpy change:
[tex]\[ \Delta H_2' = -95.7 \text{ kJ} \][/tex]

The third reaction will be used as it is. To match the overall reaction, we need to multiply it by 2:
[tex]\[ 2(\text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g)) \][/tex]
This means the enthalpy change for this step will be doubled:
[tex]\[ 2 \times \Delta H_3 = 2 \times -92.3 \text{ kJ} = -184.6 \text{ kJ} \][/tex]

Now we add up the enthalpy changes of these manipulated steps to find the enthalpy change of the overall reaction:

[tex]\[ \Delta H_{\text{overall}} = \Delta H_1' + \Delta H_2' + 2 \times \Delta H_3 \][/tex]
Substituting in the values:

[tex]\[ \Delta H_{\text{overall}} = -74.6 \text{ kJ} + -95.7 \text{ kJ} + -184.6 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -354.9 \text{ kJ} \][/tex]

Thus, the enthalpy change for the overall reaction
[tex]\[ \text{CH}_4(g) + 4 \text{Cl}_2(g) \rightarrow \text{CCl}_4(g) + 4 \text{HCl}(g) \][/tex]
is [tex]\(-354.9 \text{ kJ}\)[/tex].

Since none of the options provided match the calculated enthalpy change, it seems there's a discrepancy. The final answer is [tex]\(-354.9 \text{ kJ}\)[/tex], none of the given options.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.