At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given summations represent the series 11, 17, 23, and 29, we need to evaluate each summation for the specified values of [tex]\( n \)[/tex].
Let's consider each summation one by one:
### 1. [tex]\(\sum_{n=1}^4(5n+6)\)[/tex]
Evaluate the expression [tex]\(5n + 6\)[/tex] for [tex]\(n = 1, 2, 3, \text{and} 4\)[/tex]:
- For [tex]\(n = 1: \qquad 5(1) + 6 = 5 + 6 = 11\)[/tex]
- For [tex]\(n = 2: \qquad 5(2) + 6 = 10 + 6 = 16\)[/tex]
- For [tex]\(n = 3: \qquad 5(3) + 6 = 15 + 6 = 21\)[/tex]
- For [tex]\(n = 4: \qquad 5(4) + 6 = 20 + 6 = 26\)[/tex]
The resulting series is [tex]\(11, 16, 21, 26\)[/tex], which does not match [tex]\(11, 17, 23, 29\)[/tex]. Therefore, this summation does not represent the series.
### 2. [tex]\(\sum_{n=1}^4(6n+5)\)[/tex]
Evaluate the expression [tex]\(6n + 5\)[/tex] for [tex]\(n = 1, 2, 3, \text{and} 4\)[/tex]:
- For [tex]\(n = 1: \qquad 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 2: \qquad 6(2) + 5 = 12 + 5 = 17\)[/tex]
- For [tex]\(n = 3: \qquad 6(3) + 5 = 18 + 5 = 23\)[/tex]
- For [tex]\(n = 4: \qquad 6(4) + 5 = 24 + 5 = 29\)[/tex]
The resulting series is [tex]\(11, 17, 23, 29\)[/tex], which matches the target series. Thus, this summation represents the series.
### 3. [tex]\(\sum_{n=0}^3(6(n+1)+5)\)[/tex]
Evaluate the expression [tex]\(6(n+1) + 5\)[/tex] for [tex]\(n = 0, 1, 2, \text{and} 3\)[/tex]:
- For [tex]\(n = 0: \qquad 6(0+1) + 5 = 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 1: \qquad 6(1+1) + 5 = 6(2) + 5 = 12 + 5 = 17\)[/tex]
- For [tex]\(n = 2: \qquad 6(2+1) + 5 = 6(3) + 5 = 18 + 5 = 23\)[/tex]
- For [tex]\(n = 3: \qquad 6(3+1) + 5 = 6(4) + 5 = 24 + 5 = 29\)[/tex]
The resulting series is [tex]\(11, 17, 23, 29\)[/tex], which matches the target series. Thus, this summation represents the series.
### 4. [tex]\(\sum_{n=0}^3(6(n-1)+5)\)[/tex]
Evaluate the expression [tex]\(6(n-1) + 5\)[/tex] for [tex]\(n = 0, 1, 2, \text{and} 3\)[/tex]:
- For [tex]\(n = 0: \qquad 6(0-1) + 5 = 6(-1) + 5 = -6 + 5 = -1\)[/tex]
- For [tex]\(n = 1: \qquad 6(1-1) + 5 = 6(0) + 5 = 0 + 5 = 5\)[/tex]
- For [tex]\(n = 2: \qquad 6(2-1) + 5 = 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 3: \qquad 6(3-1) + 5 = 6(2) + 5 = 12 + 5 = 17\)[/tex]
The resulting series is [tex]\(-1, 5, 11, 17\)[/tex], which does not match [tex]\(11, 17, 23, 29\)[/tex]. Therefore, this summation does not represent the series.
### Conclusion
The summations that represent the series [tex]\(11, 17, 23, 29\)[/tex] are:
- [tex]\(\sum_{n=1}^4(6n+5)\)[/tex]
- [tex]\(\sum_{n=0}^3(6(n+1)+5)\)[/tex]
Let's consider each summation one by one:
### 1. [tex]\(\sum_{n=1}^4(5n+6)\)[/tex]
Evaluate the expression [tex]\(5n + 6\)[/tex] for [tex]\(n = 1, 2, 3, \text{and} 4\)[/tex]:
- For [tex]\(n = 1: \qquad 5(1) + 6 = 5 + 6 = 11\)[/tex]
- For [tex]\(n = 2: \qquad 5(2) + 6 = 10 + 6 = 16\)[/tex]
- For [tex]\(n = 3: \qquad 5(3) + 6 = 15 + 6 = 21\)[/tex]
- For [tex]\(n = 4: \qquad 5(4) + 6 = 20 + 6 = 26\)[/tex]
The resulting series is [tex]\(11, 16, 21, 26\)[/tex], which does not match [tex]\(11, 17, 23, 29\)[/tex]. Therefore, this summation does not represent the series.
### 2. [tex]\(\sum_{n=1}^4(6n+5)\)[/tex]
Evaluate the expression [tex]\(6n + 5\)[/tex] for [tex]\(n = 1, 2, 3, \text{and} 4\)[/tex]:
- For [tex]\(n = 1: \qquad 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 2: \qquad 6(2) + 5 = 12 + 5 = 17\)[/tex]
- For [tex]\(n = 3: \qquad 6(3) + 5 = 18 + 5 = 23\)[/tex]
- For [tex]\(n = 4: \qquad 6(4) + 5 = 24 + 5 = 29\)[/tex]
The resulting series is [tex]\(11, 17, 23, 29\)[/tex], which matches the target series. Thus, this summation represents the series.
### 3. [tex]\(\sum_{n=0}^3(6(n+1)+5)\)[/tex]
Evaluate the expression [tex]\(6(n+1) + 5\)[/tex] for [tex]\(n = 0, 1, 2, \text{and} 3\)[/tex]:
- For [tex]\(n = 0: \qquad 6(0+1) + 5 = 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 1: \qquad 6(1+1) + 5 = 6(2) + 5 = 12 + 5 = 17\)[/tex]
- For [tex]\(n = 2: \qquad 6(2+1) + 5 = 6(3) + 5 = 18 + 5 = 23\)[/tex]
- For [tex]\(n = 3: \qquad 6(3+1) + 5 = 6(4) + 5 = 24 + 5 = 29\)[/tex]
The resulting series is [tex]\(11, 17, 23, 29\)[/tex], which matches the target series. Thus, this summation represents the series.
### 4. [tex]\(\sum_{n=0}^3(6(n-1)+5)\)[/tex]
Evaluate the expression [tex]\(6(n-1) + 5\)[/tex] for [tex]\(n = 0, 1, 2, \text{and} 3\)[/tex]:
- For [tex]\(n = 0: \qquad 6(0-1) + 5 = 6(-1) + 5 = -6 + 5 = -1\)[/tex]
- For [tex]\(n = 1: \qquad 6(1-1) + 5 = 6(0) + 5 = 0 + 5 = 5\)[/tex]
- For [tex]\(n = 2: \qquad 6(2-1) + 5 = 6(1) + 5 = 6 + 5 = 11\)[/tex]
- For [tex]\(n = 3: \qquad 6(3-1) + 5 = 6(2) + 5 = 12 + 5 = 17\)[/tex]
The resulting series is [tex]\(-1, 5, 11, 17\)[/tex], which does not match [tex]\(11, 17, 23, 29\)[/tex]. Therefore, this summation does not represent the series.
### Conclusion
The summations that represent the series [tex]\(11, 17, 23, 29\)[/tex] are:
- [tex]\(\sum_{n=1}^4(6n+5)\)[/tex]
- [tex]\(\sum_{n=0}^3(6(n+1)+5)\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.