Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the expression step by step:
We want to simplify or evaluate the given expression [tex]\(\frac{\sin 2 x}{x + \cosh 2 x}\)[/tex].
1. Identify the components of the expression:
- Numerator: [tex]\(\sin(2x)\)[/tex]
- Denominator: [tex]\(x + \cosh(2x)\)[/tex]
2. Understand each part:
- [tex]\(\sin(2x)\)[/tex]: This is the sine function, which is a periodic trigonometric function that varies between -1 and 1. The argument here is [tex]\(2x\)[/tex] instead of [tex]\(x\)[/tex].
- [tex]\(\cosh(2x)\)[/tex]: This is the hyperbolic cosine function. [tex]\(\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}\)[/tex]. It always gives positive values and grows exponentially as [tex]\(x\)[/tex] increases.
3. Combine the components in the fraction:
Now we combine the two parts into our original fraction:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
This represents the entire expression given.
At this point, you should understand the structure and components of the given expression. No further simplification is generally possible unless specific values for [tex]\(x\)[/tex] are provided or specific conditions are given.
Therefore, the expression is:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
And this is the detailed breakdown of the expression asked in the question.
We want to simplify or evaluate the given expression [tex]\(\frac{\sin 2 x}{x + \cosh 2 x}\)[/tex].
1. Identify the components of the expression:
- Numerator: [tex]\(\sin(2x)\)[/tex]
- Denominator: [tex]\(x + \cosh(2x)\)[/tex]
2. Understand each part:
- [tex]\(\sin(2x)\)[/tex]: This is the sine function, which is a periodic trigonometric function that varies between -1 and 1. The argument here is [tex]\(2x\)[/tex] instead of [tex]\(x\)[/tex].
- [tex]\(\cosh(2x)\)[/tex]: This is the hyperbolic cosine function. [tex]\(\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}\)[/tex]. It always gives positive values and grows exponentially as [tex]\(x\)[/tex] increases.
3. Combine the components in the fraction:
Now we combine the two parts into our original fraction:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
This represents the entire expression given.
At this point, you should understand the structure and components of the given expression. No further simplification is generally possible unless specific values for [tex]\(x\)[/tex] are provided or specific conditions are given.
Therefore, the expression is:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
And this is the detailed breakdown of the expression asked in the question.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.