Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the expression step by step:
We want to simplify or evaluate the given expression [tex]\(\frac{\sin 2 x}{x + \cosh 2 x}\)[/tex].
1. Identify the components of the expression:
- Numerator: [tex]\(\sin(2x)\)[/tex]
- Denominator: [tex]\(x + \cosh(2x)\)[/tex]
2. Understand each part:
- [tex]\(\sin(2x)\)[/tex]: This is the sine function, which is a periodic trigonometric function that varies between -1 and 1. The argument here is [tex]\(2x\)[/tex] instead of [tex]\(x\)[/tex].
- [tex]\(\cosh(2x)\)[/tex]: This is the hyperbolic cosine function. [tex]\(\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}\)[/tex]. It always gives positive values and grows exponentially as [tex]\(x\)[/tex] increases.
3. Combine the components in the fraction:
Now we combine the two parts into our original fraction:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
This represents the entire expression given.
At this point, you should understand the structure and components of the given expression. No further simplification is generally possible unless specific values for [tex]\(x\)[/tex] are provided or specific conditions are given.
Therefore, the expression is:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
And this is the detailed breakdown of the expression asked in the question.
We want to simplify or evaluate the given expression [tex]\(\frac{\sin 2 x}{x + \cosh 2 x}\)[/tex].
1. Identify the components of the expression:
- Numerator: [tex]\(\sin(2x)\)[/tex]
- Denominator: [tex]\(x + \cosh(2x)\)[/tex]
2. Understand each part:
- [tex]\(\sin(2x)\)[/tex]: This is the sine function, which is a periodic trigonometric function that varies between -1 and 1. The argument here is [tex]\(2x\)[/tex] instead of [tex]\(x\)[/tex].
- [tex]\(\cosh(2x)\)[/tex]: This is the hyperbolic cosine function. [tex]\(\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}\)[/tex]. It always gives positive values and grows exponentially as [tex]\(x\)[/tex] increases.
3. Combine the components in the fraction:
Now we combine the two parts into our original fraction:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
This represents the entire expression given.
At this point, you should understand the structure and components of the given expression. No further simplification is generally possible unless specific values for [tex]\(x\)[/tex] are provided or specific conditions are given.
Therefore, the expression is:
[tex]\[ \frac{\sin(2x)}{x + \cosh(2x)} \][/tex]
And this is the detailed breakdown of the expression asked in the question.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.