Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the ratio in which point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], given that point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], follow these steps:
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.