Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the ratio in which point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], given that point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], follow these steps:
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.