Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the ratio in which point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], given that point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], follow these steps:
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
1. Understand the positioning of [tex]\( P \)[/tex]:
- The distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] can be considered as a whole unit, which is 1.
- Point [tex]\( P \)[/tex] is located at [tex]\(\frac{9}{11}\)[/tex] of this distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex].
2. Calculate the remaining distance:
- If point [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the way from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is the fraction of the unit distance that's left, which can be calculated as:
[tex]\[ 1 - \frac{9}{11} = \frac{11}{11} - \frac{9}{11} = \frac{2}{11}. \][/tex]
3. Establish the ratio:
- The ratio in which [tex]\( P \)[/tex] partitions the segment can now be expressed as the ratio of the distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] to the distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex].
- This can be written as:
[tex]\[ \frac{\frac{9}{11}}{\frac{2}{11}}. \][/tex]
4. Simplify the ratio:
- The common denominator (11) can be cancelled out in the fraction, simplifying the ratio:
[tex]\[ \frac{9}{2}. \][/tex]
- Therefore, the ratio can be expressed as [tex]\( 9:2 \)[/tex].
So, the point [tex]\( P \)[/tex] divides the line segment [tex]\( MN \)[/tex] into the ratio [tex]\( 9:2 \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{9:2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.